

Rottnest Island Authority

Tank 8, Oval and Golf Course Assessment Fieldwork Report

12 September 2012

Executive summary

GHD Pty Ltd (GHD) was engaged by Rottnest Island Authority (RIA) to undertake field works necessary to prepare documentation on the planned water recycling scheme to meet the requirements of the Western Australian Department of Environment and Conservation (DEC) and the Department of Health (DoHWA). A Nutrient and Irrigation Management Plan (NIMP) will be submitted to the DEC with a request to upgrade/extend the current operating licence of the Waste Water Treatment Plant (WWTP), and a Recycled Water Quality Management Plan (RWQMP) will be submitted to DoHWA.

The purpose of the field investigations was to gain an understanding of the existing environmental setting at the golf course and sports oval and to realise the potential and constraints for the planned water recycling scheme.

The scope of works undertaken during the field investigations included:

- Installation of five (5) groundwater monitoring wells to enable a baseline assessment of groundwater conditions and a means of ongoing monitoring following implementation of the irrigation scheme;
- Installation of five (5) soil bore locations to record a log of soil profile and understand soil properties such as type, grain size and origin;
- Measurement of in-situ soil physical parameters of saturated hydraulic conductivity; and
- Collection of soil samples for laboratory analysis of:
 - Soil nutrients;
 - nutrient and water holding capacity to enable water and nutrient balance modelling of the water recycling scheme; and
 - Potential Acid Sulphate Soils (PASS) for assessment of the potential impact as a result of ground disturbance which may occur during the golf course upgrade works.

This report provides a detailed description of:

- the field works carried out;
- analytical results of soil and groundwater samples collected; and
- recommendations for avoiding PASS areas.

Soil encountered during drilling at the golf course and oval were generally sandy, with a thin topsoil layer of approximately 15 - 30 cm. Sands were fine to coarse grained, and gravel was present at most locations in the form of limestone or shells (or fragments thereof), particularly bivalves and some gastropods.

The depths to groundwater at the soil bore locations (located at current and future irrigation locations) ranged from 0.7 - 1.2 m bgl.

An Acid Sulphate Soil (ASS) investigation was undertaken within the Golf Course area of Rottnest Island, to assess whether acid sulphate soil were present in the vicinity of the proposed redevelopment works. The desktop review and field investigations indicated the probability of ASS is low.

The ASS testing carried out across the Golf Course was based on the understanding that excavation works as part of the redevelopment of the area will extend no deeper than 1 mbgl. As such, sampling was only carried out to a maximum depth of 2.2 mbgl. While it was

considered that the potential for ASS is low within the tested areas, GHD makes the following recommendations:

- To reduce disturbance of PASS, or material with the possibility of oxidation and potential generation of ASS, consideration should be given to minimising the need for dewatering activities associated with the construction;
- Should high risk ASS material be observed on the base of final excavations, treatment and validation sampling of these excavation surfaces may be required;
- Based on the field pH results collected at the site, there is a low risk for corrosion of concrete or steel structures. Monitoring of groundwater during dewatering should be undertaken as it will provide an indication of whether dewatering is oxidising surrounding soils and producing acidic conditions;
- Should excavation remove high risk PASS material, consideration should be given to offsite disposal of the soil. Disposal of PASS material should be to a licenced landfill that can accept PASS material; and
- If any high risk PASS material is retained on site for reuse (i.e. replacement of material into excavations), validation sampling to confirm the acidity levels following removal should be undertaken. Neutralisation of any acid generating soil may be required if reuse is proposed

The investigation works reported the following key findings:

- Soils encountered during drilling at the golf course and oval were generally sandy, with a thin topsoil layer;
- The geology was dominated by sand, limestone gravel and shells at all sites;
- The soils were generally classified as having low available water capacity, which indicates that the soils may have limited ability to retain water between irrigations.
- The soils have high pH (>8.5) indicating a high alkalinity which may restrict plant growth;
- The depths to groundwater at the soil bore locations (located at current and future irrigation locations) ranged from 0.7 1.2 m bgl. Groundwater was shallowest at the southern sites, closest to the hypersaline lakes;
- The hydraulic conductivities measured on site varied from 50-500 mm/h between locations. Most of the values obtained would be classed as high conductivity, as expected for sandy soil, which indicates that there is a risk that the soil will act as a poor filter for contaminant and nutrient removal when irrigated with effluent;
- With the exception of phosphorus, sulphate and zinc, analytical results reported all groundwater water quality parameters were within the suitable ranges as defined in the ANZECC 200 0 for both long and short term irrigation.

GHD has prepared a NIMP for the purpose of minimising the potential for environmental impact as a result of the application of nutrient-rich recycled water on the golf course and oval. The NIMP will be assessed by the DEC in conjunction with the works approval application for the new WWTP licence. The NIMP will also be used to determine licence conditions and reporting requirements for the operation of the WWTP

Table of contents

1.	Back	ground	1
	1.1	Project	1
	1.2	Purpose of this report	1
	1.3	Scope and limitations	1
	1.4	Assumptions	2
2.	Field	Investigation Program	3
	2.1	Site description	3
	2.2	Intrusive works	3
	2.3	Soil bores	3
	2.4	Permeameter	4
	2.5	Groundwater Monitoring Well Installation	5
	2.6	Groundwater Sampling	5
3.	Resu	Its and analysis	6
	3.1	Soils: physical and chemical properties	6
	3.2	Groundwater	7
	3.3	Hydraulic conductivity	8
	3.4	Groundwater Results	8
	3.5	Acid Sulphate Soils	8
4.	Conc	lusions and Recommendations	.12
	4.1	Conclusions	.12
	4.2	Actions	.13
	4.3	PASS Recommendations	.13
5.	Refe	rences	.15

Table index

Table 1 Sar	mpling and Analytical	4
Table 2 Key	y results from soil Testing	6
Table 3 Dep	pth to groundwater at soil bore locations	7
Table 4 Sat	urated hydraulic conductivity of soil	8
Table 5	ASS pH Test Results	10
Table 6	SPOCAS Test Results	10

Figure index

Figure 1 Sample Sites	17
Figure 2 ASS Risk Map	17

Appendices

- A. Photographs
- B. Bore Logs
- C. Laboratory Reports and COC Documentation
- D. Laboratory Results Summary Tables

1. Background

1.1 Project

The Rottnest Island Authority (RIA) is advancing plans to revitalise the island's approximately 22 hectare, nine (9) hole public golf course west of the Thomson Bay Settlement. The objective is to improve the existing facilities and to ensure that fairways and greens are green year-round by installing a new irrigation scheme supplied by treated wastewater from the Rottnest Island wastewater treatment plant (WWTP). The new irrigation scheme will also supply the approximately 1.83 hectare sports oval, located adjacent to the golf course.

1.2 Purpose of this report

GHD Pty Ltd (GHD)was engaged by RIA to undertake field works necessary to prepare documentation on the proposed recycled water irrigation scheme to meet the requirements of the Western Australian Department of Environment and Conservation (DEC) and the Department of Health (DoHWA). A Nutrient and Irrigation Management Plan (NIMP) will be prepared by GHD and submitted to the DEC with a request to upgrade/extend the current operating licence of the WWTP, whilst a Recycled Water Quality Management Plan (RWQMP) will also be prepared by GHD and submitted to DoHWA detailing how the irrigation system will be implemented and monitored.

The purpose of the field investigation works was to gain an understanding of the existing environmental setting at the golf course and sports oval and to realise the potential and constraints for the planned water recycling scheme.

This report details the field investigations undertaken between 29 to 28 June 2012 at the Rottnest golf course and sports oval to collect data for the NIMP and RWQMP.

1.3 Scope and limitations

The scope of works undertaken during the field investigations included:

- Installation of a total of nine (9) soil bore locations(five (5) locations to record a log of soil profile and understand soil properties such as type, grain size and origin and baseline geo-chemical properties collection of soil samples and a further four (4) locations for the assessment of Potential Acid Sulphate Soil (PASS));
- Installation of five (5) groundwater monitoring wells to enable a baseline assessment of groundwater conditions and a means of ongoing monitoring following implementation of the irrigation scheme; Sampling of each of the newly installed groundwater monitoring wells to provide an understanding of the groundwater conditions at the site and baseline data for comparison of on-going monitoring results;
- Measurement of in-situ soil physical parameters of saturated hydraulic conductivity; and
- Collection of soil samples for laboratory analysis of:
 - Soil nutrients;
 - nutrient and water holding capacity to enable water and nutrient balance modelling of the water recycling scheme; and
 - Potential Acid Sulphate Soils (PASS) for assessment of the potential impact as a result of ground disturbance which may occur during the golf course upgrade works.

This report: has been prepared by GHD for Rottnest Island Authority and may only be used and relied on by Rottnest Island Authority for the purpose agreed between GHD and the Rottnest Island Authority as set out in section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Rottnest Island Authority arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer section(s) 1.4 of this report). GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Rottnest Island Authority and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

1.4 Assumptions

GHD makes the following assumptions with regards to any comments or recommendations provided in this report:

- All data provided to GHD by RIA is accurate and acceptable. GHD has not undertaken a quality review of the data and undertaken no assessment of its suitability or completeness with respect to the assessment works carried out;
- Data received from third party sources (such as published or online information) is true, correct and up to date;
- Analytical results from samples collected are representative of the condition of the site. GHD has used best judgement to identify the most appropriate locations for soil; and
- groundwater sampling has been based on the information available as provided by RIA.

2. Field Investigation Program

2.1 Site description

The nine (9) hole golf course has been operating for over 50 years and covers an area of approximately 22 hectares (ha). The proposed upgrade of the golf course is a major project which includes reshaping the fairways and greens, installation of an irrigation system complete with weather station and automated control system, soil amendment, along with grass establishment on tees, fairways and greens. The existing course has grass fairways, and native bush and species of non-native trees exist in pockets of the golf course and at its edges. Two of the island's hypersaline lakes border the golf course: Garden Lake is directly to the south; and Herschel Lake is to the southwest. The golf course is surrounded by small hills to the north, east and west. A small ephemeral swamp is located in the north of the golf course. An ephemeral drainage line runs from this swamp south, winding through the course to Garden Lake.

The sports oval is planted with grass and native and exotic tree and shrub species border its edges. The oval is located on quite flat ground; elevations range from 1 to 2 m AHD between the west and east. Irrigation of the oval with treated wastewater from the waste water treatment plant (WWTP) has been occurring on an infrequent basis since 1996. The nearest water body to the oval is the small swamp in the north of the golf course. The Basin and Pinky's Beach are also nearby, located approximately 200 metres north of the oval over the sand dunes.

2.2 Intrusive works

Field investigations were carried out by a qualified GHD environmental engineer and environmental technician between 29 to 31 May 2012.

Groundwater monitoring well and soil bore locations were selected based on:

- The proposed areas of waste water application;
- Areas deemed appropriate for assessing representative soil properties; and
- Areas considered suitable for monitoring of groundwater standing water levels (SWLs) so that the inferred groundwater flow direction could be determined.

A map showing the locations of the various sample sites at the golf course and oval is provided in Figure 1.

2.3 Soil bores

As part of the investigation, GHD installed a total of nine (9) soil bores across the area. Five (5) soil bores (GCS01 through GCS05) were for the purpose of collecting soil samples. A further four (4) locations (RASS1 through RASS4) were later installed at the request of RIA for collection of Potential Acid Sulphate Soil (PASS) analysis.

Soil bores were situated on current and future irrigation areas at the oval and golf course. In most cases, the bores within the golf course were placed in the centre of fairways as to ensure the soil profile within the irrigation area was accurately profiled. Boreholes (GCS01 through GCS05) were drilled using a hand auger for approximately the first metre and then using a Geoprobe[™] direct-

push method to a depth approximately two metres below the water table (Plate 1, Appendix A). Geological logs were recorded and samples were taken for each soil type encountered. Table 1 provides a summary of the soil bore locations, samples collected and the analytical suite.

Bore ID	Sample depths	Analyisis
GCS01	0 – 0.15	Physical Parameters
	0.15 - 0.5	Hold
	0.5 – 1.2	Hold
	1.2 - 3.0	Hold
GCS02	0-0.25	Hold
	0.25 – 3.0	Physical Parameters
GCS03	0-0.25	Hold
	0.25 - 3.0	Physical Parameters
GCS04	0-0.3	Physical Parameters
	0.3 – 0.7	Hold
	0.7 – 2.2	ASS
	2.2 – 2.5	Hold
	2.5 - 3.0	Hold
GCS05	0-0.2	Hold
	0.2 - 0.6	Physical Parameters
	0.6 - 1.0	Hold
	1.0 - 3.0	Hold
RASS1	0.3 - 0.6	ASS (pHf and pHfox) SPOCAS
	0.9 – 1.2	ASS (pHf and pHfox) SPOCAS
RASS2	0.2 - 0.5	ASS (pHf and pHfox) SPOCAS
	1.2 – 1.5	ASS (pHf and pHfox) SPOCAS
RASS3	0.2 - 0.7	ASS (pHf and pHfox) SPOCAS
	1.0 – 1.5	ASS (pHf and pHfox) SPOCAS
RASS4	0.4 - 0.6	ASS (pHf and pHfox) SPOCAS
	1.0 – 1.2	ASS (pHf and pHfox) SPOCAS

Table 1 Sampling and Analytical

Physical parameters: Nutrients, Major cations (Na, Ca, K, Mg), Major anions (Cl, SO₄ HCO₃, CO₃), BOD, COD, acidity, major elements (Ammonium nitrogen, Nitrate, nitrite, nitrate nitrogen, nitrite nitrogen, potassium, phosphorus, nitrogen TKN) Trace elements (copper, zinc, manganese, iron, boron) organic carbon, salinity (chloride, electrical conductivity, sodium, total soluble salts), exchangeable cations, phosphorus, sulphur, Phosphorus Sorption Index, Phosphorus Buffer Index, wilting point, water at saturation, field capacity.

2.4 Permeameter

At each of the soil bore locations (GCS01 through GCS05), field measurements of saturated hydraulic conductivity were performed at soil bore sites using a Guelph Permeameter (Soilmoisture Equipment Corp.) and the method outlined in the Operation Manual. A photo of the permeameter in operation at Rottnest is shown below (Plate 2, Appendix A). Duplicate tests were performed at all sites, one test using 5 cm of head and one with 10 cm. Infiltration measurements were taken until the rate of infiltration stabilised (three consecutive infiltration measurements within 0.1 cm/min).

2.5 Groundwater Monitoring Well Installation

Groundwater monitoring wells (GCW01 through GCW05) were installed adjacent to soil bores, at the edge of the oval and the golf course fairways. A hollow-flight auger was used to drill each of the groundwater monitoring well locations. Wells were installed to at least two (2) metres below the water table and screened to approximately one (1) metre above the water table to account for seasonal variability in groundwater levels. Graded sand was used to backfill the bore holes and sealed using a bentonite and concrete slurry to prevent surface water infiltration to the wells. The wells were then completed using a standpipe. Following installation, each of the wells was developed by using compressed air until it was noted that the groundwater changed from milky to clear.

2.6 Groundwater Sampling

As part of GHD's field investigations at the golf course and oval, the five (5) newly installed groundwater monitoring wells were sampled to enable a baseline assessment of groundwater conditions and a means of ongoing monitoring following implementation of the irrigation scheme.

Groundwater samples were collected using a Micropurge Low-Flow system and submitted to the laboratory for analysis of the following suite of compounds:

- Total Petroleum Hydrocarbons (TPHs);
- Benzene, Toluene, Ethylbenzene and Xylene (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organocholorine Pesticides (OCPs);
- Polychlorinated Biphenols (PCBs);
- Heavy metals (Al, As, Cd, Cr, Cu, Ni, Pb and Zn);
- Nutrients nitrate, nitrite, nitrogen, ammonia, and total phosphorus;
- Major anions and cations;
- Biological Oxygen Demand (BOD);
- Chemical Oxygen Demand (COD); and
- Phenols.

In addition to groundwater samples, each of the monitoring wells was gauged and the groundwater depths recorded. Section 3.2 provides a summary of the groundwater sampling findings.

3. Results and analysis

3.1 Soils: physical and chemical properties

Soils encountered during drilling at the golf course and oval were generally sandy, with a thin topsoil layer of approximately 15 – 30 cm. Sands were fine to coarse grained, and gravel was present at most locations in the form of limestone or shells (or fragments thereof), particularly bivalves and some gastropods (Plate 3, Appendix A). Lithified soil layers (cemented sand) were also encountered at two locations (GCW02 and GCS04). Detailed borehole logs are provided in Appendix B. Although soil bores were located within approximately 10 m of monitoring wells, the geology was found to be slightly variable between corresponding sites, as shown in the soil layer summary table in Appendix B. Overall, the geology was dominated by sand, limestone gravel and shells at all sites.

Soil samples were analysed for their physical and chemical properties to determine the site's suitability for irrigation with recycled water. The water and nutrient holding capacity of the soil samples was assessed. Key laboratory results are presented in Table 2 and the complete analysis report is provided in Appendix C. With regard to the exchangeable cation results in the complete analysis report, it should be noted that although the cation exchange of all samples was high (in the range normally expected of clay soils), this result is likely to be linked to the high calcium content of the soil rather than indicating the presence of clay. The exchangeable sodium result for sample GCS03_0.25-3.0 was very high (18.9%) which would normally indicate sodic soil. Although this would be an issue for a clay soil irrigation site, it is thought that this is more likely linked with the high salt content of this particular sample. The chloride content of this sample was also very high, at 3 000 mg/kg. The source of this salt is likely to be the hypersaline lakes; in particular the GCS03 site was situated close to Herschel Lake. Given the sandy nature of the soils encountered at Rottnest, sodicity is not considered to be an issue for the irrigation of treated effluent at this site.

g ^a Site [sample from depth range]	pH (in water)	PBI	Phosphorus – Colwell extraction (mg/kg)	AWC (mm/m)
GCS01 [0.15-0.5 m]	8.69	92.7	19	94
GCS02 [0.25-3.0 m]	9.40	615.0	8	91
GCS03 [0.25-3.0 m]	9.27	87.6	6	128
GCS04 [0-0.3 m]	8.57	210.4	33	65
GCS05 [0.2-0.6 m]	9.18	114.1	9	69
(QA sample result)	(9.20)	(112.0)	(7)	(53)

Table 2 Key results from soil Testing

^a EC = electrical conductivity, PBI = phosphorus buffer index, AWC = available water capacity, estimated as field capacity – wilting point

The physical properties of the soil samples collected at Rottnest can be used to assess the site suitability for effluent irrigation. Bond (2002) describes the soil properties that limit the potential for effluent irrigation. The results of soil testing at Rottnest have been compared to the limitations described by Bond (2002) and an assessment of potential limitations for the proposed Rottnest golf course and oval water recycling scheme is presented below.

The soil sampled indicates that they have a low available water capacity: Bond (2002) defines this as a moderate limitation if <200 mm/m. This indicates that the soils may have limited ability to retain water between irrigations and therefore require irrigating more frequently: this may restrict plant growth and increase the risk of nitrate and salt leaching to groundwater.

The soils have high pH (>8.5) indicating a high alkalinity which may restrict plant growth. Bond (2002) defines this as a moderate limitation if pH measured in CaCl₂ is between 6 - 8.5, which is equivalent to a pH measured in water of \sim 6.5 - 9 (Myers et al 1999).

The ability of the soils to adsorb phosphate is an important factor of consideration for effluent irrigation schemes. PBI is a measure of the adsorption potential of a particular soil, and can be interpreted along with the Colwell P result, which indicates extractable P in the soil (existing P in the soil). Soils with PBI in the range 71-140 are considered to have a low adsorption capacity and a critical Colwell P of 34 mg/kg (Gourley et al 2007). The critical Colwell P value is the concentration of P expected to produce 95% of maximum pasture yield (as indicated by the Victorian Department of Primary Industries). Effluent irrigated soils with low PBI need to be managed to avoid runoff or leaching of phosphate. GCS01 at the oval has a low PBI but the Colwell P is lower than the critical value which suggests that previously applied P was not excessive. The GCS03 and GCS05 samples also had low PBI and low Colwell P. GCS04 had a moderate PBI and the highest Colwell P of all soils sampled, but still below the critical value given by Gourley et al (2007). The GCS02 soil sample had a high PBI and very low Colwell P. It is not known why the PBI varied between sites so greatly, but the network of monitoring bores over the different parts of the site can be used in the future to assess the heterogeneity of impacts which may be an effect of the differences in soil conditions such as PBI. The potential for phosphorus leaching will be assessed in the NIMP using water and nutrient balance modelling which incorporates the laboratory results.

3.2 Groundwater

The depth to groundwater was estimated during soil bore and monitoring well drilling, and ranged from 0.6 - 2.5 metres below ground level (m bgl). The depths to groundwater at the soil bore locations (located at current and future irrigation locations) ranged from 0.7 - 1.2 m bgl, and are presented in Table 3. Groundwater was shallowest at the southern sites, closest to the hypersaline lakes.

Soil bore site ID	Depth to groundwater (m bgl)
GCS01	1.2
GCS02	0.7
GCS03	0.7
GCS04	1.2
GCS05	1.1

Table 3 Depth to groundwater at soil bore locations

Irrigation with effluent is generally not recommended on sites with a very shallow watertable (<1 – 2 m) (Bond 2002). The watertable at the Rottnest golf course and oval sites (as measured during the soil bore and monitoring well drilling) was very shallow; in some cases less than one metre below ground level. The seasonality of the groundwater depth needs to be established; the groundwater depths presented here are relevant to one time (early winter) in one year (2012). Shallow groundwater at effluent irrigation sites poses health and environmental risks. A separation between the irrigated surface and the watertable of two metres is recommended by the Department of Water (WQPN 22, 33) to limit waterlogging and control contamination of groundwater via soil filtration and microbial action.

3.3 Hydraulic conductivity

Data collected in the field using the permeameter were used to estimate saturated hydraulic conductivity of soil ~0.5 m below ground at the 5 soil bore locations. The results are displayed in Table 4 to one significant figure, to account for the uncertainties in this field measurement, and range from 50-500 mm/h. Bond (2002) identifies the ranges of hydraulic conductivities that may be limitations for effluent irrigation schemes: conductivities in the range 20-80 mm/h are considered a slight limitation due to the risk of soil waterlogging, and conductivities >80 mm/h are a moderate limitation because the soil will act as a poor filter for contaminant and nutrient removal. The hydraulic conductivities at GCS02-GCS04 are high, as expected for sandy/gravelly soils.

Site	Measured at depth (m bgl)	Average K Values (mm/h to 1 significant figure)
GCS01	0.3	90
GCS02	0.5	300
GCS03	0.5	200
GCS04	0.45	500
GCS05	0.5	50

Table 4 Saturated hydraulic conductivity of soil

3.4 Groundwater Results

Analytical results for groundwater samples collected are provided in **Appendix C.** Groundwater was analysed for physical parameters and a suite or organic and inorganic compounds. The results were compared to the ANZECC 2000 guidelines for Long and Short Term Irrigation, so that the baseline groundwater quality across the site could be understood. Analytical results reported one (1) location (GCW03) where sulphate was above the threshold criteria for Long Term Irrigation. Phosphorus was reported between the ranges of 0.23 and 0.82 mg/L which is above the Short term irrigation range of 0.8-12 mg/L and above the Long Term irrigation level of 0.05 mg/L. Zinc was reported in GCW02 above the Short Term Irrigation levels.

Laboratory results reported all organic compounds below the laboratory Limit of Reporting (LOR).

3.5 Acid Sulphate Soils

The Western Australia Department of Environment and Conservation (DEC) provides the regulatory framework for the identification and investigation of Acid Sulphate Soils (ASS) entitled *Identification and investigation of acid sulphate soils and acidic landscapes* May 2009.

In assessing the likelihood of ASS being present, the DEC recommends a staged tiered approach was adopted which involves:

- A review of DEC ASS risk maps as provided on the Landgate Shared Land Information Portal (SLIP);
- A site inspection and review of field indicators, such as water logged soils, peat or peaty soils, observations of unusually clear / milky blue-green surface water, iron staining, corrosion of structures, hydrogen sulfide odour or low soil pH;
- preliminary soil pH tests: measurement of soil pH (pHF), soil pH after rapid oxidation with hydrogen peroxide (pHFOX), and reaction rate (visual measure of vigorousness of reaction, on a scale of 1 (low) to 4 (extreme)); and
- laboratory analysis: to determine net acidity, a measure of existing and potential acidity, and acid neutralising capacity of soils.

3.5.1 Review of ASS Risk Areas

The Department of Environment and Conservation has complied ASS risk maps for several regions of WA, however Rottnest Island has not been included in this dataset. GHD reviewed ASS risk maps provided by the Western Australia Shared Land Information Platform. The maps showed that portions of the Golf course and Oval were located within potential ASS risk areas.

A copy of the Risk Map is provided in **Figure 2**.

3.5.2 Intrusive Investigations

As the risk maps suggested the area was located within an ASS risk area, it was prudent to further assess the potential risk as specified in the requirements for the NIMP. Furthermore, due to the proposed excavation works as part of the development of the golf course, it was considered vital to assess the potential for ASS within low-lying areas.

The scope of work included:

- Identification of four (4) soil bore locations (RASS01 through RASS04) based on proximity to proposed excavation works as part of the golf course redevelopment (refer Figure 1);
- Drilling of boreholes using a Geoprobe[™] direct-push method to a depth approximately
 1.0 m below the identified water table;
- Collection of two (2) soil samples from each location (one (1) sample from the potentiometric surface of the groundwater and one (1) sample approximately 1.0 m below the groundwater;
- Transportation of samples to ALS under chain of custody (COC) documentation (refer **Appendix C**) where they were frozen within 24 hours of sampling. ALS is accredited by the National Association of Testing Authorities (NATA) for acid sulfate soil analysis.

Observations and analytical results are discussed below. Borelogs, displaying lithology, observations and soil samples collected are presented in **Appendix B.** Tabulated results, laboratory reports and COC documentation is provided in **Appendix C**.

3.5.3 Field Indicators

Potential field indictors of acid sulphate soil may include hydrogen sulphide or decayed vegetation odours, saturated black / grey sediments, and excessively clear surface water runoff.

During the field investigation program, evidence of such ASS indicators were not observed. The lithology encountered was generally sand and gravel with no indications of organic matter or odours noted, however in most cases the soil profile was noted to be saturated.

3.5.4 Field Screen

A pH screen was carried out in the laboratory as a preliminary indication of ASS. The test involved an initial measure of soil pH (pH_f) and the change in pH measured following rapid oxidation with hydrogen peroxide (pH_{FOX}). A change in pH of greater than 2 units (Δ pH>2) from the initial pH (pH_f) is a general indication of potential ASS. Table 5 provides a summary of the reaction results.

Sample ID	pH (F)	pH (Fox)	∆рН
RASS1-0.3-0.6	9.8	8	1.8
RASS1-0.9-1.2	9.8	8.3	1.5
RASS2-0.2-0.5	9.8	8.3	1.5
RASS2-1.2-1.5	9.9	8.3	1.6
RASS3-0.2-0.7	9.9	8.3	1.6
RASS3-1.0_1.5	9.9	8.3	1.6
RASS4-0.4_0.6	9.8	8.2	1.6
RASS4-1.0_1.2	9.9	8.2	1.7
GCS04-0.7_2.2	9.8	8.2	1.6

Table 5ASS pH Test Results

The preliminary ASS screen did not report any reactions >2 pH units. Therefore it was considered that the probability of ASS was low.

3.5.5 SPOCAS Analysis

Suspension Peroxide Oxidation Combined Acidity & Sulphur (SPOCAS) testing was also carried out on each of the ASS samples collected. SPOCAS testing measures the actual acid and potential acid and sulphur available for oxidation. Table 6 provides a summary of the SPOCAS test results.

Table 6 SPOCAS Test Results

Sample ID	Titratable Actual Acidity	Peroxide Oxidisable Sulphur	Excess Acid Neutralising Capacity	Net Acidity
Units	mole H+ / t	% S	% CaCO3	% S
RASS1-0.3-0.6	<2	0.14	76.6	<0.02
RASS1-0.9-1.2	<2	0.18	78.7	<0.02
RASS2-0.2-0.5	<2	0.09	74.1	<0.02
RASS2-1.2-1.5	<2	0.19	81.8	<0.02
RASS3-0.2-0.7	<2	0.12	79.2	<0.02

Sample ID	Titratable Actual Acidity	Peroxide Oxidisable Sulphur	Excess Acid Neutralising Capacity	Net Acidity
RASS3-1.0_1.5	<2	0.2	81.8	<0.02
RASS4-0.4_0.6	<2	0.14	81.4	<0.02
RASS4-1.0_1.2	<2	0.18	78.4	<0.02
GCS04-0.7_2.2	<2	0.1	79.4	<0.02

Titratable actual acidity provides an indication of the readily available soluble acid. The analytical results suggest that minimal amounts of soluble acid are present in the soil profile.

Peroxide Oxidisable Sulphur is a measure of the amount of sulphur which may be oxidised when exposed by excavation. The analytical results suggest that there is some potential for oxidisable sulphur to be present in the soil profile.

Excess Acid Neutralising Capacity is a measure of the soil's ability to neutralise acids in the soil. The analytical results suggest that the soil profile has significant neutralising capacity, if acid was present

Net Acidity is an indication of the final liming rate which would be required in order to neutralise acids if present. The analytical results suggest that liming would be minimal or not required due to the neutralising capacity of the soil.

4. Conclusions and Recommendations

4.1 Conclusions

4.1.1 Soil Physical Properties

Soils encountered during drilling at the golf course and oval were generally sandy, with a thin topsoil layer. The geology was dominated by sand, limestone gravel and shells at all sites. Soil samples were analysed for their physical and chemical properties to determine the site's suitability for irrigation with recycled water

The soils were generally classified as having low available water capacity, which indicates that the soils may have limited ability to retain water between irrigations. This is typical of sandy and gravelly soils.

The soils have high pH (>8.5) indicating a high alkalinity which may restrict plant growth.

The phosphorus retention capacity varied between soil samples taken at different locations and ranged from low to very high. The network of monitoring bores installed over the different parts of the site can be used in the future to assess the heterogeneity of impacts which may be an effect of the differences in soil conditions such as PBI.

The ability of the native soils to be used as an effluent irrigation site and support turf growing will be assessed using water and nutrient balance modelling during the development of the NIMP. The results will also be used to assess the likelihood for groundwater contamination with nutrients applied with the irrigation water.

4.1.2 Groundwater Depth

The depths to groundwater at the soil bore locations (located at current and future irrigation locations) ranged from 0.7 – 1.2 m bgl. Groundwater was shallowest at the southern sites, closest to the hypersaline lakes. The seasonality of the groundwater depth needs to be established by baseline monitoring over a period of at least six months before construction (and irrigation) of the golf course begins. Irrigation with effluent is generally not recommended on sites with a very shallow water table as it poses health and environmental risks. There is an increased risk of contamination of groundwater. This is to be assessed in the NIMP, which will recommend irrigation scheduling that matches inputs with uptake.

4.1.3 Hydraulic Conductivity

The hydraulic conductivities measured on site varied from 50-500 mm/h between locations. Most of the values obtained would be classed as high conductivity, as expected for sandy soil, which indicates that there is a risk that the soil will act as a poor filter for contaminant and nutrient removal when irrigated with effluent. This is to be assessed in the NIMP, which will recommend irrigation management that minimises the risk for environmental impact.

4.1.4 Groundwater Results

The groundwater quality at the golf course and oval bores was assessed in the field on 28 June 2012. The physical parameters measured in the field indicated that bores GCW02 and GCW03 had higher salinity than the other bores. These bores are located close to Garden and Herschel lakes respectively. Laboratory analysis reported chloride concentration in these bores (~10,000 mg/L) was also far greater than at the other monitoring locations (~1,000 mg/L). Historical monitoring of the hypersaline lakes suggests EC is in the order of 100,000 uS/cm and the groundwater quality variability between the near-lake bores (GCW02 and GCW03) and the others suggests groundwater-surface (lake) water connectivity. The Rottnest Island fresh groundwater lens probably meets the hypersaline lake water somewhere in the vicinity of the lake shore, but the exact location may be seasonally variable. It is likely that the direction of groundwater flow and the location of the freshwater-hypersaline water divide change with the seasons as the lake and groundwater levels rise and fall due to the impacts of rainfall and evaporation.

Concentrations of sulphate, phosphorus and zinc were reported above the ANZECC 2000 Long and Short Term Irrigation levels, however as the area is not subject to irrigation by waste water effluent, the concentrations are considered to be naturally occurring.

4.1.5 Potential Acid Sulphate Soils

A PASS investigation was undertaken within the Golf Course area of Rottnest Island, to assess whether acid sulphate soils were present in the vicinity of the proposed redevelopment works.

The desktop review and field investigations indicated the probability of ASS is low.

4.2 Actions

GHD has prepared a NIMP for the purpose of minimising the potential for environmental impact as a result of the application of nutrient-rich recycled water on the golf course and oval. The NIMP will be assessed by the DEC in conjunction with the works approval application for the new WWTP licence and used to determine licence conditions and reporting requirements for the operation of the WWTP

4.3 PASS Recommendations

The assessment concluded that the risk of encountering PASS is low. However, the PASS testing carried out across the Golf Course was based on the understanding that excavation works (as part of the redevelopment of the area) will not extend deeper than 1 mbgl. As such, PASS sampling was only carried out to a maximum depth of 2.2 mbgl. While it was considered that the potential for ASS is low within the tested areas, GHD makes the following recommendations:

- To reduce disturbance of PASS, or material with the possibility of oxidation and potential generation of ASS, consideration should be given to minimising the need for dewatering activities associated with the construction;
- Should high risk ASS material be observed on the base of final excavations, treatment and validation sampling of these excavation surfaces may be required;
- Based on the field pH results collected at the site, there is a low risk for corrosion of concrete or steel structures. Monitoring of groundwater during dewatering should be

undertaken as it will provide an indication of whether dewatering is oxidising surrounding soils and producing acidic conditions;

- Should excavation remove high risk PASS material, consideration should be given to offsite disposal of the soil. Disposal of PASS material should be to a licenced landfill that can accept PASS material; and
- If any high risk PASS material is retained on site for reuse (ie. replacement of material into excavations), validation sampling to confirm the acidity levels following removal should be undertaken. Neutralisation of any acid generating soil may be required if reuse is proposed

5. References

Bond, W.J. 2002, "Assessing Site Suitability for an Effluent-Irrigated Plantation" ch. 27 in McKenzie, N., Coughlan, K. and Cresswell, H. 2002, Soil Physical Measurement and Interpretation for Land Evaluation, CSIRO Publishing, Collingwood.

Myers, B.J., Bond, W.J., Benyon, R.G., Falkiner, R.A., Polglase, P.J., Smith, C.J., Snow, V.O. & Theiveyanathan, S. 1999, Sustainable Effluent-Irrigated Plantations: An Australian Guideline, CSIRO Forestry and Forest Products, Canberra.

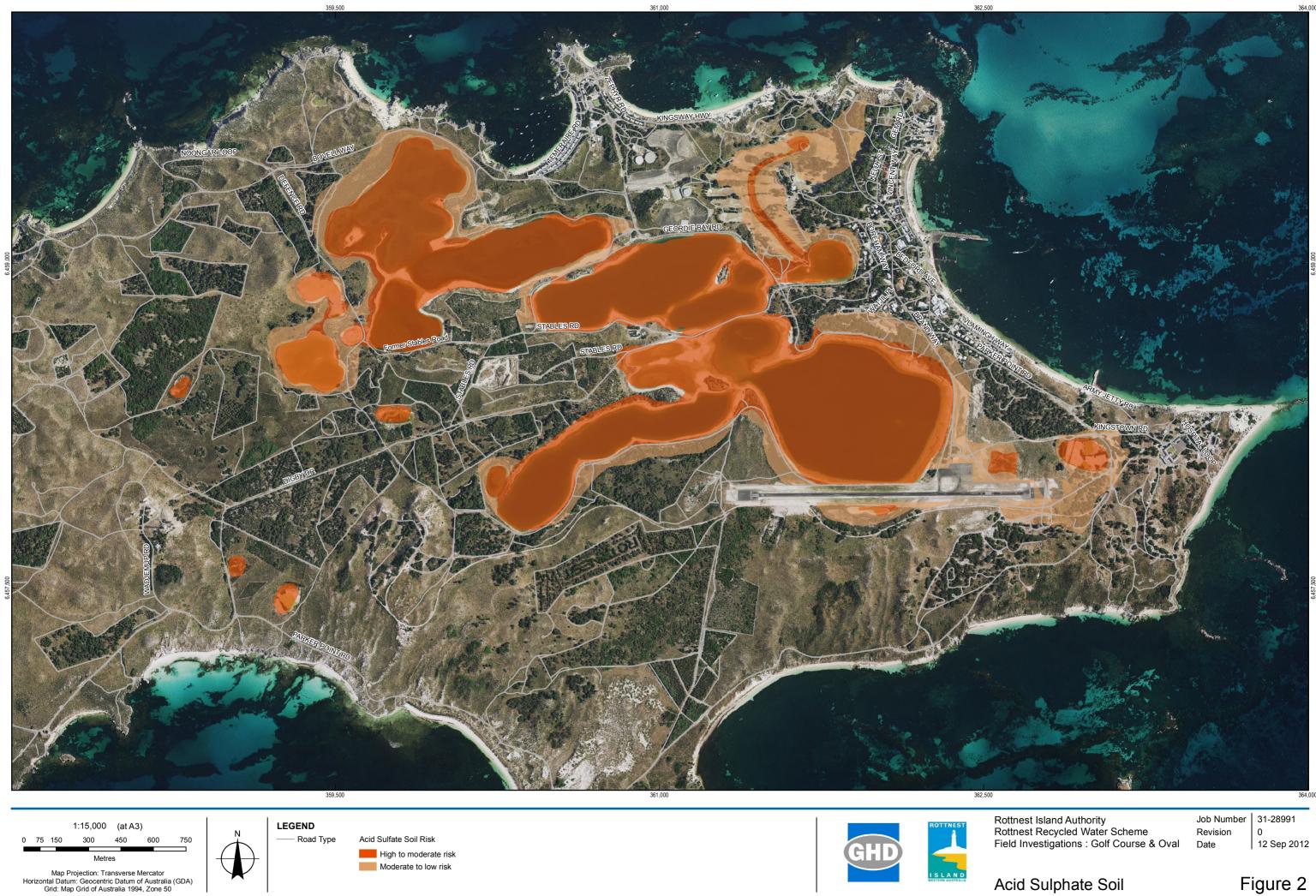
Gourley, C.J., Melland, A.R., Waller, R.A., Awty, I.M., Smith, A.P., Peverill, K.I. & Hannah, M.C. 2007,

Making Better Fertiliser Decisions for Grazed Pastures in Australia, Victorian Government Department of Primary Industries, Melbourne.

Figures

GHD | Report for Rottnest Island Authority - Tank 8, Oval and Golf Course Assessment, 31/28991

Figure 1 Sample Sites


Figure 2 ASS Risk Map

G:\31/28991\GIS\Maps\MXD\3128991_G001_Fig01_Rev0.mxd © 2012. While GHD has taken care to ensure the accuracy of this product, GHD, RIA, and GA make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD, RIA, and GA cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Rottnest Island Authority: Roads Type - 20120510, Rottnest Island Mosiac - 20120214; Sampling Location Type - 20120628; GA: NATMAP 250k Series 3 - 20100418. Created by: slee2, erice

+ Soil Bore Location

Sampling Locations

G:31/28991/GISI/Maps/IMXD/31/28991_G004_Fig02_Rev0.mxd © 2012. While GHD has taken care to ensure the accuracy of this product, GHD, RIA, and DEC make no representations or warranties about its accuracy, completeness or suitability for any particular purpose. GHD and RIA, and DEC cannot accept liability of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred as a result of the product being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Rottnest Island Authority: Road Type - 20120510, Rottnest Island Mosiac - 20120214; DEC: Acid Sulfate Soil Risk - 2012. Created by: vdinh, erice

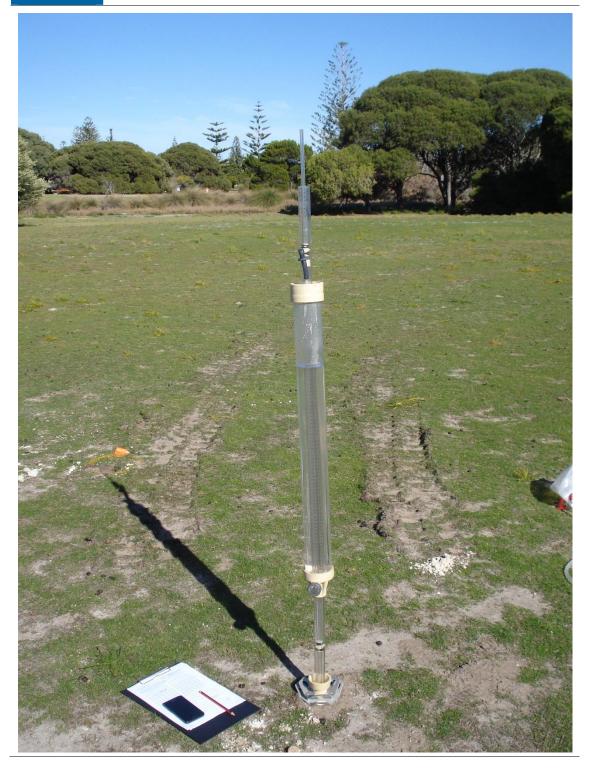
Acid Sulphate Soil

Figure 2

Appendices

GHD | Report for Rottnest Island Authority - Tank 8, Oval and Golf Course Assessment, 31/28991/213139

A. Photographs



Document Identification	Photograph 1
Description	Geoprobe Drilling Rig
Photograph Date	29 May 2012

Document Identification	Photo 2
Description	Permeameter Testing
Photograph Date	28 May 2012

Document Identification	Photo 3
Description	Limstone Shells
Photograph Date	29 May 2012

B. Bore Logs

Bore No.: GCS01

Projec Projec Locat	ct: Golf ct No.:	Course 312899 olf Cour	se and Oval)5/2012	Drill Co: EcoprobeEasting: 361911.891Driller: S.NorrieNorthing: 6459473.342Rig Type: Hydraulic HammerGrid Ref:Total Depth (m): 3Elevation: 0Diameter (mm): 50Logged by: L.NavarreteChecked by: A.Su	therlar
Juio	Jimou			51271	0.2012		
Depth (m)	DRILLING DRILLING Water Mater DRI D bbu Sample ID DRILLING Mater DRILLING DRILLING Mater DRILLING D				Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol): Particle Size; Colour; Secondary / Minor Components.	Elevation /
						Ground Surface:	0.0
0.0	HA		0.0001 0.045		*****	GRASS M L	0.0
			GCS01_0-0.15			SAND Dark brown, fine to medium grained, poorty graded, subrounded- subangular; some limestone gravel fine to medium grained, poorty graded, subangular-subrounded. Top soil SAND	<u>-0.1</u> 0.1
			GCS01_0.15-0.5			Pale brown/pale yellow, fine to medium grained, poorly graded, subrounded-subangular; some shell fragments and limestone gravel fine to medium grained, fine to coarse grained, well graded, subangular-subrounded.	-0.5 0.5
-1.0			GCS01_0.5-1.2			SAND Pale yellow, fine to medium grained, poorly graded, subrounded- subangular; some shell fragments and limestone gravel fine to medium grained, fine to coarse grained, well graded, subangular- subrounded.	
-2.0			GCS01_1.2-3.0	•		gravely SAND Pale white, fine to coarse grained, well graded, subangular- subrounded becoming fine to medium grained, subrounded at 2.7m. U	- <u>1.2</u> 1.2
3.0						Bottom of hole at 3.0m	3.00
IOTE	S:						
				fication	is based on A	Australian Standards AS 1726-1993. This log is not intended for geotechnical purposes.	
rilling W(x) T(x) C(x) D(x)	Rotar Percu	y Wash y Triple 7 ssion Cal	PSC(x Tube AS	Augerir	assion Simulta agering - Soli ag - Hollow F and Augering	light M Moist (L) Loose (VD) Very Dense (S) Soft (VST) Very	Stiff

Proje Proje Local	ct: Golf ct No.: : ion: Go	Course 312899 If Cour	se and Oval			Drill Co: Ecoprobe Driller: S.Norrie Rig Type: Hydraulic Hammer Total Depth (m): 3	North Grid Eleva	ning: 6 Ref: ation: 0		
Date	Drilled:			o: 29/(05/2012	Diameter (mm): 50	Logg	ed by:	L.Navarrete Checked by: A.Su	therlan
Depth (m)	Drilling Method	DR (mdd) OId	Sample ID	Water	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation / Denth (m)
						Ground Surface:				0.00
-0.0	HA		GCS02_0-0.25			GRASS SAND Brown/grey, fine to medium grained, poorly graded, subangular- subrounded. Top Soil	D	VL	No odour noted throughout profile.	0.00
				¥		SAND Pale yellow becoming pale grey at 0.5m, fine to coarse grained, well graded, subangular-subrounded; some shells present.	M	L		-0.25
	Hydrauli¢ Hammer	:		-			W			
			GCS02_0.25-3.0							
2.0										
-3.0-										-3.0
5.0						Bottom of hole at 3.0m				3.00
NOTE				1						
NUIE	.J.									
				ification	is based on A	Australian Standards AS 1726-1993. This log is not intended for geotechnical	purposes.			
$\frac{Drillin}{W(x)}$ $\frac{T(x)}{C(x)}$ $\frac{D(x)}{D(x)}$	Rotary Percus	Wash Triple T sion Cal	PSC(x Tube AS	Augerir	ussion Simulta ugering - Solio 1g - Hollow F and Augering	d Flight D Dry (VL) Very Loose (D) Der light M Moist (L) Loose (VD) V	se ery Dense		Cohesive Soils (VS) Very Soft (ST) Stiff (S) Soft (VST) Very (F) Firm (H) Hard	Stiff

Doro No	
Role NO	.: GCS03

Proje Proje Locat	ct: Golf ct No.: :	Course 312899 If Cours 29/05/2	se and Oval 2012 to		05/2012	Drill Co: Ecoprobe Driller: S.Norrie Rig Type: Hydraulic Hammer Total Depth (m): 3 Diameter (mm): 50	North Grid Eleva	ning: 6 Ref: tion: 0	1476.558 459173.619 L.Ellis Checked by: A.Su	therla
Depth (m)	Drilling Method	DR (mqq) DIA	Sample ID	Water	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation /
						Ground Surface:				0.00
0.0	HA				*****	GRASS	M	L	Some organic matter present.	0.0
			GCS03_0-0.25			SAND Brown, fine to medium grained, poorly graded, subrounded- subangular. Top soil				-0.2
-2.0	Hydraulic Hammer		GCS03_0.25-3.0	₹		SAND Pale yellow, fine to coarse grained, subangular-subrounded, well graded; some shells present. Becoming pale grey and less shells with depth.	W		No odour noted throughout profile.	0.2
3.0					·	Bottom of Hole at 3.0m				-3.0
IOTE	S:			<u> </u>	<u> </u>			<u> </u>		
HD S	oil Classi	fications	s: The GHD Soil Classi	fication	is based on A	Australian Standards AS 1726-1993. This log is not intended for geotechnical	purposes.			
rilling W(x) T(x) C(x) D(x)	g Abbrev Rotary Rotary Percus Percus	viations Wash Triple T sion Cat sion Do	E PSC(x Tube AS	() Percu A Augerii H	ussion Simulta ugering - Soli 1g - Hollow F and Augering	Moisture Abbreviations: Consistency: Granular Soils Flight D Dry (VL) Very Loose (D) Dei (L) Loose M Moist (L) Loose (VD) V W Wet (MD) Medium Dense			Cohesive Soils (VS) Very Soft (ST) Stiff (S) Soft (VST) Very (F) Firm (H) Hard	Stiff

Bore N	lo.: GC	S04

Proje Proje Loca	ect: Golf ect No.: 3	Course 312899 If Cours 30/05/2	se and Oval 2012 to		05/2012	Drill Co: Ecoprobe Driller: S.Norrie Rig Type: Hydraulic Hammer Total Depth (m): 3 Diameter (mm): 50	North Grid I Eleva	ing: 64	1306.468 459406.004 L.Ellis Checked by: A.Sut	herland
Depth (m)	Drilling Method	DR (wdd) OId	ILLING Sample ID	Water	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation / Depth (m)
						Ground Surface:				0.00
<u>-0.0</u>	HA		GCS04_0-0.3			GRASS silty SAND Brown, fine grained, poorly graded, subrounded-subangular. Top Soil	M	L	Some organic matter present.	0.00
	Hydrauli¢ Hammer		GCS04_0.3-0.7			SAND Pale yellow, fine to coarse grained becoming fine to medium grained with depth, subangular-subrounded, well graded; some shells and limestone gravel fine to coarse grained, well graded, subangular- subrounded.	w	L	No odour noted throughout profile.	0.30
			GCS04_0.7-2.2	¥						
_			GCS04_2.2-2.5							
_			GCS04_2.5-3.0							
- 3.0 -					1.451.45140(4), 1-1	Bottom of hole at 3.0m				-3.00 3.00
				ification	is based on A	ustralian Standards AS 1726-1993. This log is not intended for geotechnical p	ourposes.			<u> </u>
RW(x) RT(x) PC(x) PD(x)	Rotary Rotary Percus Percus	Wash Triple T sion Cat sion Dov	ube AS	Augerin H	ussion Simulta ugering - Solic ng - Hollow Fl and Augering A) Air, (F) Foa	nous Casing Abbreviations: Granular Soils Flight D Dry (VL) Very Loose (D) Den (ght M Moist (L) Loose (VD) Ve W Wet (MD) Medium Dense	se ry Dense		Cohesive Soils(VS) Very Soft(ST) Stiff(S) Soft(VST) Very(F) Firm(H) Hard	Stiff

Bore No.: GCS05

Proje Proje Locat	ct: Golf ct No.: tion: Go	Course 312899 olf Cour	se and Oval		05/0010	Driller Rig Ty Total	co: Ecoprobe :: S.Norrie /pe: Hydraulic Ha Depth (m): 3	ammer		Northi Grid F Elevat	ing: 64 Ref: tion: 0		aliad buy A Cuil	h a ni a n di
Date	Drilled:			0: 30/0	05/2012	Diame	eter (mm): 50			Logge	a by: T	L.EIIIS Che	ecked by: A.Sut	neriand
Depth (m)	Drilling Method	PID (ppm)	RILLING Sample ID	Water	Graphic Log	Soil Type (Cl	LITHOLOGICAL I assification Group S Secondary / Mino	symbol); Particle Size;	; Colour;	Moisture	Consistency	COMME CONTAMINANT Odours, staining, v separate phase liqu ash	INDICATORS vaste materials, ids, imported fill,	Elevation / Depth (m)
						Ground Surfac	e:							0.00
-0.0	HA				*****	GRASS				М	L	Some organic ma	tter present -	0.00
_			GCS05_0-0.2			silty SAND Brown, fine grain Soil	ned, poorly graded,	subrounded-subangu	ılar. Top			rootlets.	roughout	-0.20 0.20
-			GCS05_0.2-0.6			grained, subang	ular-subrounded, po	th depth, fine to medi porly graded; some st ied, well graded, suba	nells and			No odour noted th profile.	rougnout	
_			GCS05_0.6-1.0			grained, subang	ular-subrounded, po fine to coarse grain	th depth, fine to medi oorly graded; some sh ed, well graded, suba	nells and		L			-0.60 0.60
—1.0 -	Hydraulio Hammer			¥				ell graded, subrounde	ed-	w	L			-1.10 1.10
_						subangular, som	e shells and shells f	ragments present.						
			GCS05_1.0-3.0											2.00
-3.0						Bottom of hole a	t3.0m		/					-3.00 3.00
-							r. J. UIII		/					
NOTE	S:		1	-		1						I		
GHD S Drillin RW(x) RT(x) PC(x) PD(x)	g Abbre Rotary Rotary Percus Percus	viations y Wash y Triple T ssion Ca ssion Do	PSC(: Tube AS	x) Percu Ai Augerii Hi	assion Simulta agering - Soli ag - Hollow F and Augering	anous Casing d Flight light	AS 1726-1993. This I Moisture Abbreviations: D Dry M Moist W Wet	og is not intended for s Consistency: Granular Soils (VL) Very Loose (L) Loose (MD) Medium Dense	(D) Dense (VD) Very			Cohesive Soils (VS) Very Soft (S) Soft (F) Firm	(ST) Stiff (VST) Very ! (H) Hard	Stiff

Bore No.: GCW01	
D010 110 00 1101	

Projec Projec Locat	ct: Golf ct No.: ion: Go	Course 312899 olf Cour	nd Authority and Oval Assessm 11 se and Oval			Driller Rig Ty Total	Co: Ecoprobe :: S.Norrie ype: Hollow Auge Depth (m): 4	r		Northi Grid R Elevat	ing: 64 Ref: ion: 0	913.565 59465.973		
Date I	Drilled	: 29/05/2): 29/()5/2012	Diame	eter (mm): 50			Logge	d by:	L.Ellis Checke	d by: A.Suth	erland
Depth (m)	Drilling Method	PID (mqq) OI4	Sample ID	Water	Graphic Log	Soil Type (Cl	LITHOLOGICAL E assification Group S Secondary / Minor	ymbol); Particle Size;	Colour;	Moisture	Consistency	COMMENTS CONTAMINANT INDI Odours, staining, waste separate phase liquids, i ash.	CATORS	Elevation / Depth (m)
						Ground Surfac	e:							
														0.00
	HA		Cement	A A			ne limestone gravel,	um grained, subangu fine grained, poorly g		D	L	Some roots present.		0.00
-	AH		Bentonite			SAND Pale yellow, fine subrounded, sor	to coarse grained, v ne shell fragments p	vell graded, subangul present.	ar-	М	L	No odour noted throu profile.		<u>-0.50</u> 0.50
- 1.0 - - - - 2.0 - -			Gravel											
- 				فيستستستين		SAND Pale yellow/grey some shell fragr		ined, subangular-subi	rounded,	w	L		-	-3.00 3.00
-4.0 -						Bottom of hole a	it 4.0m		/					<u>-4.00</u> 4.00
NOTE	S:			I	<u> </u>	L				1	1	1		
Drilling RW(x) RT(x) PC(x) PD(x)	J Abbre Rotar Rotar Percu Percu	y Wash y Wash y Triple T ssion Cal ssion Do	PSC(x Fube AS ble Tool AH A) Percu Aı Augerir Ha	ssion Simulta Igering - Solia Ig - Hollow F and Augering	nous Casing 1 Flight light	AS 1726-1993. This le Moisture Abbreviations: D Dry M Moist W Wet	og is not intended for g Consistency: Granular Soils (VL) Very Loose (L) Loose (MD) Medium Dense	(D) Dense (VD) Very			Cohesive Soils (VS) Very Soft (S) Soft (F) Firm	(ST) Stiff (VST) Very St (H) Hard	tiff

BOREHOLE LOG ENVIRONMENTAL - SOIL BORE

Bore No.: GCW02

Projec Projec Locat	ct: Golf	Course 312899 If Cour 29/05/2	se and Oval		05/2012	Drille Rig T Total	Co: Ecoprobe r: S.Norrie ype: Hollow Aug Depth (m): 3.5 eter (mm): 50	er		Eastin Northi Grid F Elevat Logge	ing: 64 Ref: ion: 0	702.672 I59106.46 L.Ellis Checked by: A.Su	utherland
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water	Graphic Log		Secondary / Mine	Symbol): Particle Size: (Colour;	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation / Depth (m)
-0.0	НА	Ce	ment + Bentonite			Ground Surface clayey SAND Dark brown, fin graded, low pla silty SAND	e to medium graine	d, subangular-subrounde	ed, poorly	M	L	Some organic matter present. No odour noted throughout	0.00 0.00 -0.25 0.25
- - 	АН					Pale grey, fine	to coarse grained, v ne shells and shells	vell graded, subrounded fragments present.	-	W		profile.	
-			Gravel	فستستستي									
				mininininin		LIMESTONE					Н		<u>-2.70</u> 2.70
- -				فتؤسف يؤسفه		Pale white, well SAND Pale grey, fine I subangular, sor	to coarse grained, v ne shells and shells	vell graded, subrounded fragments present.	-		L		-2.90 2.90 -3.50
- 4.0						Bottom of hole	at 3.5m		/				3.50
-	g Abbrev Rotary Rotary Percus	viations Wash Triple T	S: PSC(x Fube AS) Percu Ai Augerii	is based on A ussion Simulta ugering - Solic g - Hollow Fl and Augering	nous Casing I Flight ight	AS 1726-1993. This Moisture Abbreviations: D Dry M Moist W Wet	log is not intended for ge Consistency: Granular Soils (VL) Very Loose (L) Loose (MD) Medium Dense	otechnical pur (D) Dense (VD) Very			Cohesive Soils (VS) Very Soft (ST) Stiff (S) Soft (VST) Very (F) Firm (H) Hard	/ Stiff

BOREHOLE LOG

Bore	No :	GCW03
DUIC	110	000000

Projec Projec Locat	ct: Golf ct No.: ion: Go	Course 312899 olf Cours 29/05/2	se and Oval		05/2012	Driller Rig Ty Total	Co: Ecoprobe r: S.Norrie ype: Hollow Aug Depth (m): 3.5 eter (mm): 50	9 r		Eastin Northi Grid F Elevat Logge	ing: 64 Ref: tion: 0		Itherland
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water	Graphic Log		Secondary / Mind	Symbol); Particle Size;	; Colour;	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation / Depth (m)
						Ground Surfac	e:						0.00
- <u>0.0</u> - -	НА	Ce	ment + Bentonite			subrounded, so graded, subang SAND Pale yellow, fine subrounded, so	me limestone grave ular-subrounded. to coarse grained,	d, poorly graded, suba I fine to medium grain well graded, subangu I fine to medium grain	ned, poorly	M	L	Some organic matter present - f roots. No odour noted throughout profile.	
	AH		Gravel	minininininininini		subangular, son	o coarse grained, w ne limestone gravel ular-subrounded.	ell graded, subrounde fine to medium graine	ed- ed, poorly	w	L		<u>-1.00</u> 1.00
				ininfinintininini									
						Bottom of hole a	at 3.5m		/				-3.50 3.50
- -													
NOTE		fication	• The GUD Soil Classi	fication	is beend on	Australion Stondord	ል\$ 1726 1002 ጥር-	log is not into ded for	motechnical	Torac			
Drilling RW(x) RT(x) PC(x) PD(x)	g Abbre Rotary Rotary Percus Percus	viations Wash Triple T Ssion Cat Ssion Do	PSC(x ube AS ble Tool AH	t) Percu Ai Augerii Hi	ussion Simulta ugering - Soli ng - Hollow F and Augering	nous Casing 1 Flight light	AS 1726-1993. This Moisture Abbreviations: D Dry M Moist W Wet	log is not intended for a Consistency: Granular Soils (VL) Very Loose (L) Loose (MD) Medium Dense	(D) Dense (VD) Very			Cohesive Soils(VS) Very Soft(ST) Stiff(S) Soft(VST) Very(F) Firm(H) Hard	' Stiff

BOREHOLE LOG

Bore	No.:	GCW04

Proje Proje Locat	ct: Golf ct No.: ion: Go	Course 312899 olf Cours 30/05/2	se and Oval 2012 to		05/2012	Drill Co: Ecoprobe Driller: S.Norrie Rig Type: Hollow Auger Total Depth (m): 3.5 Diameter (mm): 50			ing: 64 Ref: tion: 0	1309.215 459435.609 L.Ellis Checked by: A.Sul	therland
Depth (m)	Drilling Method	DR (mdd) OId	RILLING Sample ID	Water	Graphic Log	LITHOLOGICAL DESCRIPTION Soil Type (Classification Group Symbol); Particle S Secondary / Minor Components.	ize; Colour;	Moisture	Consistency	COMMENTS/ CONTAMINANT INDICATORS Odours, staining, waste materials, separate phase liquids, imported fill, ash.	Elevation / Depth (m)
						Ground Surface:					
	HA	Ce	ment + Bentonite	a		silty SAND Brown, fine grained, subrounded-subangular, poorly g small shells, shell fragments and limestone gravel fine poorly graded, subangular-subrounded.		M	L	Some organic matter present - fine roots.	0.00
-	AH					SAND Pale brown/grey, fine to medium grained, poorly grad subrounded-subangular, some shell fragments preser LIMESTONE Pale grey, well cemented.	ed, nt.	w	H L	No odour noted throughout profile.	-0.80 0.60 -0.80 0.80
— 1.0 — —			Gravel	10110100000000000000000000000000000000		silty SAND Pale brown/pale grey, fine to coarse grained, well gra subangular-subrounded, some shells and limestone g grained poorly graded, subangular-subrounded.					
				minininininini							
- -				munium							-3.50
_						Bottom of hole at 3.5m	/				3.50
NOTE	S:			<u> </u>	<u> </u>			<u> </u>			1
		ifications		ficatior	is based on A	ustralian Standards AS 1726-1993. This log is not intended Moisture Consistency:	for geotechnical put	poses.			
RW(x) RT(x) PC(x) PD(x)	Rotar Rotar Percus Percus	y Wash y Triple T ssion Cat ssion Dov	PSC(x Fube AS ble Tool AH	A Augerii H	ussion Simulta ugering - Solio ng - Hollow F and Augering A) Air, (F) Foa	nous Casing Abbreviations: Granular Soils Flight D Dry (VL) Very Loose ght M Moist (L) Loose W Wet (MD) Medium De	(VD) Very			Cohesive Soils(VS) Very Soft(ST) Stiff(S) Soft(VST) Very(F) Firm(H) Hard	Stiff

BOREHOLE LOG

Bore	No.:	GCW05

Proje Proje	ect: Golf ect No.:	f Course 312899	nd Authority e and Oval Assessn 91	nent		Driller	co: Ecoprobe :: S.Norrie /pe: Hollow Auge	r		Eastin Northi Grid R	ng: 64	567.198 59574.011		
Loca	tion: Go	olf Cour : 30/05/2	se and Oval	o: 30/0)5/2012	Total	Depth (m): 4.5 eter (mm): 50			Elevat Logge		L.Ellis Che	cked by: A.Suth	nerland
		DR	RILLING								-			
Depth (m)	Drilling Method	PID (ppm)	Sample ID	Water	Graphic Log		Secondary / Minor	ymbol); Particle Size; (Colour;	Moisture	Consistency	COMMEN CONTAMINANT I Odours, staining, w separate phase liquid ash.	NDICATORS aste materials, ds, imported fill,	Elevation / Depth (m)
						Ground Surface	e:							
-0.0												-		0.00
-	HA		Cement				ell fragment and lime	rly graded, subrounded stone fine grianed, sub		M	L	Some organic mat	tter present.	0.00
-			Bentonite			SAND Mottled brown a subangular-subr fine grained, poo	nd pale yellow, fine t ounded, some shells	o coarse grained, well s, shell fragments and Jlar-subrounded; beco	limestone	W	L			0.30
	AH		Gravel											
- - 														
-														
- 														
-														
-4.0														
				F!		Bottom of hole a	t 4.5m							-4.50 4.50
				$ \square $					/					
-														
-5.0														
NOTE	ES:													
				fication	is based on A	Australian Standards	10	og is not intended for ge	eotechnical pur	poses.				
RW(x) RT(x) PC(x) PD(x)	Rotar Rotar Percu Percu	y Wash y Wash y Triple T ission Cal ission Do shing me	PSC(x Fube AS ble Tool AH	Augerir Ha	ssion Simulta Igering - Solid Ig - Hollow Fl Ind Augering	l Flight light	Moisture Abbreviations: D Dry M Moist W Wet	Consistency: Granular Soils (VL) Very Loose (L) Loose (MD) Medium Dense	(D) Dense (VD) Very	Dense		Cohesive Soils (VS) Very Soft (S) Soft (F) Firm	(ST) Stiff (VST) Very S (H) Hard	Stiff
nere			(17) 17 atter, (191) 1	, (P	.,, (1) 1 08									

C. Laboratory Reports and COC Documentation

Part of the Envirolab Group

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.envirolabservices.com.au Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

CERTIFICATE OF ANALYSIS 124817

Golf Course

5 waters

30/7/12

30/7/12

Client: Rottnest Island Authority PO Box 693 Fremantle WA 6959

Attention: Helen Shortland-Jones

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received: Location:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 6/08/12

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 3/08/12

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Tom Edwards Micro Team Leader

taylo

Sandra Taylor Assistant Lab Manager

Page 1 of 8

MPL Reference: Revision No:

Nutrients in Water						
Our Reference:	UNITS	124817-1	124817-2	124817-3	124817-4	124817-5
Your Reference		GC1	GC2	GC3	GC4	OV1
Date Sampled		30/07/2012	30/07/2012	30/07/2012	30/07/2012	30/07/2012
Type of sample		water	water	water	water	water
Total Nitrogen (Total N)	mg/L	8.0	8.4	7.8	7.5	20
Nitrate as N	mg/L	<0.005	<0.005	2.9	0.82	<0.005
Nitrite as N	mg/L	<0.005	<0.005	0.017	0.010	<0.005
Ammonia as N	mg/L	0.81	0.91	0.030	2.3	6.2
Total Phosphorus (Total P)	mg/L	1.0	1.1	1.4	1.5	1.9
Phosphate as P	mg/L	0.067	0.016	0.024	<0.005	0.018

Client Reference: Gol

Golf Course

Dissolved Metals in Water						
Our Reference:	UNITS	124817-1	124817-2	124817-3	124817-4	124817-5
Your Reference		GC1	GC2	GC3	GC4	OV1
Date Sampled		30/07/2012	30/07/2012	30/07/2012	30/07/2012	30/07/2012
Type of sample		water	water	water	water	water
Date prepared	-	1/8/12	1/8/12	1/8/12	1/8/12	1/8/12
Date analysed	-	1/8/12	1/8/12	1/8/12	1/8/12	1/8/12
Potassium	mg/L	160	350	63	27	68
Lead	mg/L	<0.03	<0.03	<0.03	<0.03	<0.03
Cadmium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Nickel	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Zinc	mg/L	<0.02	0.03	<0.02	<0.02	<0.02

Miscellaneous Inorganics						
Our Reference:	UNITS	124817-1	124817-2	124817-3	124817-4	124817-5
Your Reference		GC1	GC2	GC3	GC4	OV1
Date Sampled		30/07/2012	30/07/2012	30/07/2012	30/07/2012	30/07/2012
Type of sample		water	water	water	water	water
Date prepared	-	2/8/12	2/8/12	2/8/12	2/8/12	2/8/12
Date analysed	-	2/8/12	2/8/12	2/8/12	2/8/12	2/8/12
Chloride in water	mg/L	7,800	14,000	2,500	640	1,200

MPL Reference: Revision No:

Microbiological Testing						
Our Reference:	UNITS	124817-1	124817-2	124817-3	124817-4	124817-5
Your Reference		GC1	GC2	GC3	GC4	OV1
Date Sampled		30/07/2012	30/07/2012	30/07/2012	30/07/2012	30/07/2012
Type of sample		water	water	water	water	water
Date testing started	-	30/07/12	30/07/12	30/07/12	30/07/12	30/07/12
Date testing completed	-	1/08/12	1/08/12	1/08/12	1/08/12	1/08/12
Thermotolerant Coliforms	cfu/100mL	<10	20	30	<10	<10
E.Coli	cfu/100mL	<10	20	30	<10	<10

MPL Reference: Revision No:

Method ID	Methodology Summary
INORG-055	Total Nitrogen by colourimetric analysis in accordance with APHA 4500-P J, 4500-NO3 F.
INORG-055	Nitrate by colourimetric analysis and calculation in accordance with APHA 21st ED 4500-NO3 F.
INORG-055	Nitrite by colourimetric analysis in accordance with APHA 21st ED 4500-NO2 B.
INORG-057	Ammonia by colourimetric analysis in accordance with APHA 21st ED 4500-NH3 F.
INORG-060	Total Phosphorus by colourimetric analysis in accordance with APHA 21st ED 4500-P J.
INORG-060	Phosphate by colourimetric analysis in accordance with APHA 21st ED 4500-P E.
METALS-020	Metals in soil and water by ICP-OES.
INORG-081	Chloride by Ion Exchange Chromatography in accordance with APHA 21st ED 4110B.
MICRO-001	Thermotolerant Coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recomended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.
MICRO-001	E. Coli: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.7-2007). Recomended maximums based on NHMRC and ARMC Australian Drinking Water Guidelines.

		Cli€	ent Referenc	;e: G	olf Course			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Nutrients in Water						Base II Duplicate II % RPD		Recovery
Total Nitrogen (Total N)	mg/L	0.1	INORG-055	<0.1	[NT]	[NT]	LCS	112%
Ammonia as N	mg/L	0.005	INORG-057	<0.005	[NT]	[NT]	LCS	93%
Total Phosphorus (Total P)	mg/L	0.01	INORG-060	<0.01	[NT]	[NT]	LCS	98%
Phosphate as P	mg/L	0.005	INORG-060	<0.005	[NT]	[NT]	LCS	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Dissolved Metals in Water						Base II Duplicate II % RPD		Recovery
Date prepared	-			1/8/12	124817-2	1/8/12 1/8/12	LCS	1/8/12
Date analysed	-			1/8/12	124817-2	1/8/12 1/8/12	LCS	1/8/12
Potassium	mg/L	0.5	METALS- 020	<0.5	124817-2	350 370 RPD:6	LCS	99%
Lead	mg/L	0.03	METALS- 020	<0.03	124817-2	<0.03 <0.03	LCS	106%
Cadmium	mg/L	0.01	METALS- 020	<0.01	124817-2	<0.01 <0.01	LCS	106%
Copper	mg/L	0.01	METALS- 020	<0.01	124817-2	<0.01 <0.01	LCS	105%
Chromium	mg/L	0.01	METALS- 020	<0.01	124817-2	<0.01 <0.01	LCS	105%
Manganese	mg/L	0.01	METALS- 020	<0.01	124817-2	<0.01 <0.01	LCS	106%
Nickel	mg/L	0.02	METALS- 020	<0.02	124817-2	<0.02 <0.02	LCS	104%
Zinc	mg/L	0.02	METALS- 020	<0.02	124817-2	0.03 0.03 RPD:0	LCS	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		
Date prepared	-			2/8/12	124817-1	2/8/12 2/8/12	LCS	2/8/12
Date analysed	-			2/8/12	124817-1	2/8/12 2/8/12	LCS	2/8/12
Chloride in water	mg/L	1	INORG-081	<1	124817-1	7800 7700 RPD: 1	LCS	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	1			
Microbiological Testing								
Date testing started	-	F	F	30/7/12	1			
Date testing completed	-			1/8/12				
Thermotolerant Coliforms	cfu/100 mL	1	MICRO-001	<1				
E.Coli	cfu/100 mL	1	MICRO-001	<1				

Report Comments:

INS: Insufficient sample for this test; NT: Not tested; PQL: Practical Quantitation Limit; <: Less than; >: Greater than RPD: Relative Percent Difference; NA: Test not required; LCS: Laboratory Control Sample; NR: Not requested NS: Not specified; NEPM: National Environmental Protection Measure

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however were analysed at a frequency to meet of exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD a matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spike and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and Speciated Phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for SVOC and Speciated Phenols.

ANALYTICAL CHEMISTRY & TESTING SERVICES

(ALS)

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	EP1204381	Page	: 1 of 6
Client	: GHD PTY LTD	Laboratory	: Environmental Division Perth
Contact	: MR ASHLEY SUTHERLAND	Contact	: Scott James
Address	: LEVEL 8, 180 LONSDALE ST	Address	: 10 Hod Way Malaga WA Australia 6090
	MELBOURNE VIC, AUSTRALIA 3001		
E-mail	: ashley.sutherland@ghd.com	E-mail	: perth.enviro.services@alsglobal.com
Telephone	: +61 03 8687 8000	Telephone	: +61-8-9209 7655
Facsimile	: +61 03 8687 8111	Facsimile	: +61-8-9209 7600
Project	: Rottnest Island- Golf Course and Oval Assesment	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	: 31/28991		
C-O-C number	:	Date Samples Received	: 01-JUN-2012
Sampler	: L.E.	Issue Date	: 13-JUN-2012
Site	:		
		No. of samples received	: 9
Quote number	:	No. of samples analysed	: 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

	NATA Accredited Laboratory 825 Accredited for compliance with	<i>Signatories</i> This document has been electronically carried out in compliance with procedures s		ndicated below. Electronic signing has been		
NAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category		
		Leanne Cooper	Acid Sulfate Soils Supervisor	Perth ASS		

WORLD RECOGNISED

Environmental Division Perth Part of the ALS Laboratory Group 10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- ASS: EA003 (NATA Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Vigorous; 4 Very Vigorous
- ASS: EA029 (SPOCAS): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from kg/t dry weight to kg/m3 in-situ soil, multiply reported results x wet bulk density of soil in t/m3.
- ASS: EA029 (SPOCAS): Retained Acidity not required because pH KCI greater than or equal to 4.5

Sub-Matrix: SOIL		Clie	ent sample ID	RASS1-0.3-0.6	RASS1-0.9-1.2	RASS2-0.2-0.5	RASS2-1.2-1.5	RASS3-0.2-0.7
	Clie	ent sampli	ng date / time	31-MAY-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1204381-001	EP1204381-002	EP1204381-003	EP1204381-004	EP1204381-005
EA029-A: pH Measurements								
pH KCI (23A)		0.1	pH Unit	9.8	9.8	9.8	9.9	9.9
pH OX (23B)		0.1	pH Unit	8.0	8.3	8.3	8.3	8.3
EA029-B: Acidity Trail								
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	<2	<2	<2
Titratable Peroxide Acidity (23G)		2	mole H+ / t	<2	<2	<2	<2	<2
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	<0.005
sulfidic - Titratable Peroxide Acidity (s-23G)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	<0.005
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	<0.005
EA029-C: Sulfur Trail								
KCI Extractable Sulfur (23Ce)		0.005	% S	0.04	0.03	0.03	0.06	0.05
Peroxide Sulfur (23De)		0.005	% S	0.18	0.22	0.12	0.26	0.17
Peroxide Oxidisable Sulfur (23E)		0.005	% S	0.14	0.18	0.09	0.19	0.12
acidity - Peroxide Oxidisable Sulfur		5	mole H+ / t	87	115	57	121	74
(a-23E)								
EA029-D: Calcium Values								
KCI Extractable Calcium (23Vh)		0.005	% Ca	0.24	0.21	0.22	0.24	0.22
Peroxide Calcium (23Wh)		0.005	% Ca	27.7	32.7	30.1	33.5	30.7
Acid Reacted Calcium (23X)		0.005	% Ca	27.5	32.5	29.9	33.2	30.5
acidity - Acid Reacted Calcium (a-23X)		5	mole H+ / t	13700	16200	14900	16600	15200
sulfidic - Acid Reacted Calcium (s-23X)		0.005	% S	22.0	26.0	23.9	26.6	24.4
EA029-E: Magnesium Values								
KCI Extractable Magnesium (23Sm)		0.005	% Mg	0.06	0.06	0.06	0.10	0.08
Peroxide Magnesium (23Tm)		0.005	% Mg	1.20	1.40	0.85	1.57	0.92
Acid Reacted Magnesium (23U)		0.005	% Mg	1.13	1.34	0.79	1.47	0.84
Acidity - Acid Reacted Magnesium (a-23U)		5	mole H+ / t	932	1100	651	1210	690
sulfidic - Acid Reacted Magnesium		0.005	% S	1.49	1.76	1.04	1.93	1.11
(s-23U)								
EA029-F: Excess Acid Neutralising Capa	city							
Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3	76.6	78.7	74.1	81.8	79.2
acidity - Excess Acid Neutralising		10	mole H+ / t	15300	15700	14800	16400	15800
Capacity (a-23Q)								
sulfidic - Excess Acid Neutralising		0.02	% S	24.5	25.2	23.7	26.2	25.4
Capacity (s-23Q)								
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5

Sub-Matrix: SOIL		Cli	ent sample ID	RASS1-0.3-0.6	RASS1-0.9-1.2	RASS2-0.2-0.5	RASS2-1.2-1.5	RASS3-0.2-0.7
	С	lient sampli	ing date / time	31-MAY-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1204381-001	EP1204381-002	EP1204381-003	EP1204381-004	EP1204381-005
EA029-H: Acid Base Accounting - Contin	ued							
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate		1	kg CaCO3/t	<1	<1	<1	<1	<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.14	0.18	0.09	0.19	0.12
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	87	115	57	121	74
Liming Rate excluding ANC		1	kg CaCO3/t	6	9	4	9	6

Compound EA029-A: pH Measurements pH KCI (23A) pH OX (23B) EA029-B: Acidity Trail Titratable Actual Acidity (23F) Titratable Derovide Acidity (22C)	CAS Number	ient sampli LOR 0.1 0.1	ng date / time Unit pH Unit pH Unit	31-MAY-2012 15:00 EP1204381-006 9.9	31-MAY-2012 15:00 EP1204381-007 9.8	31-MAY-2012 15:00 EP1204381-008	30-MAY-2012 15:00 EP1204381-009	
EA029-A: pH Measurements pH KCI (23A) pH OX (23B) EA029-B: Acidity Trail Titratable Actual Acidity (23F)	 	0.1	pH Unit	9.9		EP1204381-008	EP1204381-009	
pH KCI (23A) pH OX (23B) EA029-B: Acidity Trail Titratable Actual Acidity (23F)			· ·		9.8			
pH KCI (23A) pH OX (23B) EA029-B: Acidity Trail Titratable Actual Acidity (23F)			· ·		9.8			
EA029-B: Acidity Trail Titratable Actual Acidity (23F)		0.1	pH Unit			9.9	9.8	
Titratable Actual Acidity (23F)				8.3	8.2	8.2	8.2	
Titratable Actual Acidity (23F)								
		2	mole H+/t	<2	<2	<2	<2	
Titratable Peroxide Acidity (23G)		2	mole H+ / t	<2	<2	<2	<2	
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	<2	<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	
sulfidic - Titratable Peroxide Acidity (s-23G)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.005	% pyrite S	<0.005	<0.005	<0.005	<0.005	
EA029-C: Sulfur Trail								
KCI Extractable Sulfur (23Ce)		0.005	% S	0.10	0.05	0.14	0.01	
Peroxide Sulfur (23De)		0.005	% S	0.29	0.19	0.32	0.11	
Peroxide Oxidisable Sulfur (23E)		0.005	% S	0.20	0.14	0.18	0.10	
acidity - Peroxide Oxidisable Sulfur		5	mole H+ / t	123	86	111	63	
(a-23E)								
EA029-D: Calcium Values								
KCI Extractable Calcium (23Vh)		0.005	% Ca	0.24	0.21	0.27	0.21	
Peroxide Calcium (23Wh)		0.005	% Ca	35.6	29.2	32.9	36.2	
Acid Reacted Calcium (23X)		0.005	% Ca	35.4	29.0	32.6	36.0	
acidity - Acid Reacted Calcium (a-23X)		5	mole H+ / t	17600	14400	16300	18000	
sulfidic - Acid Reacted Calcium (s-23X)		0.005	% S	28.3	23.2	26.1	28.8	
EA029-E: Magnesium Values								
KCI Extractable Magnesium (23Sm)		0.005	% Mg	0.10	0.06	0.14	0.04	
Peroxide Magnesium (23Tm)		0.005	% Mg	1.31	1.13	1.13	0.94	
Acid Reacted Magnesium (23U)		0.005	% Mg	1.20	1.07	0.99	0.90	
Acidity - Acid Reacted Magnesium (a-23U)		5	mole H+ / t	989	881	818	741	
sulfidic - Acid Reacted Magnesium (s-23U)		0.005	% S	1.58	1.41	1.31	1.19	
EA029-F: Excess Acid Neutralising Capacit	ty							
Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3	81.8	81.4	78.4	79.4	
acidity - Excess Acid Neutralising		10	mole H+ / t	16300	16300	15700	15900	
Capacity (a-23Q)								
sulfidic - Excess Acid Neutralising		0.02	% S	26.2	26.1	25.1	25.4	
Capacity (s-23Q)								
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	

Sub-Matrix: SOIL		Cli	ent sample ID	RASS3-1.0_1.5	RASS4-0.4_0.6	RASS4-1.0_1.2	GCS04-0.7_2.2	
	С	lient sampl	ing date / time	31-MAY-2012 15:00	31-MAY-2012 15:00	31-MAY-2012 15:00	30-MAY-2012 15:00	
Compound	CAS Number	LOR	Unit	EP1204381-006	EP1204381-007	EP1204381-008	EP1204381-009	
EA029-H: Acid Base Accounting - Conti	nued							
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	<0.02	
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	<10	
Liming Rate		1	kg CaCO3/t	<1	<1	<1	<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.20	0.14	0.18	0.10	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	123	86	111	63	
Liming Rate excluding ANC		1	kg CaCO3/t	9	6	8	5	

ANALYTICAL CHEMISTRY & TESTING SERVICES

(ALS)

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	EP1205271	Page	: 1 of 15
Client	: GHD PTY LTD	Laboratory	: Environmental Division Perth
Contact	: MR ASHLEY SUTHERLAND	Contact	: Scott James
Address	EVEL 8, 180 LONSDALE ST	Address	: 10 Hod Way Malaga WA Australia 6090
	MELBOURNE VIC, AUSTRALIA 3001		
E-mail	: ashley.sutherland@ghd.com	E-mail	: perth.enviro.services@alsglobal.com
Telephone	: +61 03 8687 8000	Telephone	: +61-8-9209 7655
Facsimile	: +61 03 8687 8111	Facsimile	: +61-8-9209 7600
Project	: 3128991 GOLF COURSE & OVAL ASSESSMENT	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 29-JUN-2012
Sampler	: LN	Issue Date	: 09-JUL-2012
Site	: Rottnest Island		
		No. of samples received	: 6
Quote number	: EN/005/09	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

NATA Accredited Laboratory 825

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Surrogate Control Limits

Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Agnes Szilagyi	Senior Organic Chemist	Perth Organics	
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics	
Chas Tucker	Inorganic Chemist	Perth Inorganics	
Cicelia Bartels	Metals Instrument Chemist	Perth Inorganics	
Rassem Ayoubi	Senior Organic Chemist	Perth Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	
-	-		

Environmental Division Perth Part of the ALS Laboratory Group

10 Hod Way Malaga WA Australia 6090 Tel. +61-8-9209 7655 Fax. +61-8-9209 7600 www.alsglobal.com A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cl	ient samplir	ng date / time	28-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	384	472	300	494	371
Total Alkalinity as CaCO3		1	mg/L	384	472	300	494	371
ED041G: Sulfate (Turbidimetric) as SO	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	166	862	1380	294	151
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	789	9320	10800	2320	732
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	116	481	344	117	108
Magnesium	7439-95-4	1	mg/L	70	555	679	215	52
Sodium	7440-23-5	1	mg/L	463	4480	5140	1250	438
Potassium	7440-09-7	1	mg/L	49	195	233	54	36
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	0.01	<0.01	<0.01	<0.01
Arsenic	7440-38-2	0.001	mg/L	0.007	0.004	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0001	0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.004	0.007	0.011	0.007	0.002
Nickel	7440-02-0	0.001	mg/L	0.013	0.034	0.014	0.006	0.007
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.016	0.022	9.40	0.021	0.010
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	3.48	0.87	0.38	0.17	2.81
EK057G: Nitrite as N by Discrete Ana	llyser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	0.05	0.05
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.01	<0.01	<0.01	2.78	0.47
EK059G: Nitrite plus Nitrate as N (NO)x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	<0.01	2.83	0.52
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.49	0.23	0.60	0.82	0.82
EN055: Ionic Balance								
Total Anions		0.01	meq/L	33.4	290	339	81.4	31.2
Total Cations		0.01	meq/L	32.9	270	302	79.3	29.6
Ionic Balance		0.01	%	0.67	3.71	5.74	1.35	2.58

Page : 4 of 15 Work Order : EP1205271 Client : GHD PTY LTD Project : 3128991 GOLF COURSE & OVAL ASSESSMENT

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cli	ient sampli	ng date / time	28-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
EP026ST: Chemical Oxygen Dema	nd (Sealed Tube)							
Chemical Oxygen Demand		5	mg/L	49	198	371	70	36
EP030: Biochemical Oxygen Dema	and (BOD)							
Biochemical Oxygen Demand		2	mg/L	<2	<2	<2	<2	<2
EP066: Polychlorinated Biphenyls	(PCB)							
Total Polychlorinated biphenyls		1	µg/L	<1	<1	<1	<1	<1
EP068A: Organochlorine Pesticide	es (OC)							
alpha-BHC	319-84-6	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
beta-BHC	319-85-7	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
gamma-BHC	58-89-9	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
delta-BHC	319-86-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Heptachlor	76-44-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Aldrin	309-00-2	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Dieldrin	60-57-1	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4.4`-DDE	72-55-9	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	72-20-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4.4`-DDD	72-54-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4.4`-DDT	50-29-3	2	µg/L	<2	<2	<2	<2	<2
Endrin ketone	53494-70-5	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Methoxychlor	72-43-5	2	µg/L	<2	<2	<2	<2	<2
Total Chlordane (sum)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of DDD + DDE + DDT		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP074A: Monocyclic Aromatic Hyc								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
Styrene	100-42-5	5	µg/L	<5	<5	<5	<5	<5
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	<5	<5	<5

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cl	ient sampli	ng date / time	28-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
EP074A: Monocyclic Aromatic Hydr	ocarbons - Continued							
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	<5	<5	<5
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	<5	<5	<5
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	<5	<5	<5
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5	<5	<5
p-IsopropyItoluene	99-87-6	5	µg/L	<5	<5	<5	<5	<5
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	<5	<5	<5
P074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50	<50	<50
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50	<50	<50
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50	<50	<50
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50	<50	<50
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5	<5	<5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	<5
EP074E: Halogenated Aliphatic Con	npounds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	<50
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50	<50
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5	<5

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cli	ient samplii	ng date / time	28-JUN-2012 15:00	28-JUN-2012 15:00	28-JUN-2012 15:00	28-JUN-2012 15:00	28-JUN-2012 15:0
ompound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
P074E: Halogenated Aliphatic Cor								
1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	5	μg/L	<5	<5	<5	<5	<5
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5	<5
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Cor	mpounds							
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	<5	<5	<5	<5
1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	<5	<5	<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	μg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	5	μg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5	<5
EP074H: Naphthalene								
Naphthalene	91-20-3	7	µg/L	<7	<7	<7	<7	<7
EP075(SIM)A: Phenolic Compounds	3							
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylphenol	95-48-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.6-Dichlorophenol	87-65-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-Methylphenol	59-50-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0

Page : 7 of 15 Work Order : EP1205271 Client : GHD PTY LTD Project : 3128991 GOLF COURSE & OVAL ASSESSMENT

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cli	ent samplii	ng date / time	28-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
EP075(SIM)A: Phenolic Compounds - Cor	ntinued							
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	87-86-5	2.0	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b)fluoranthene	205-99-2	1.0	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (WHO)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydrocarbor	าร							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrocarb	ons - NEPM 2 <u>01</u>	0 Draft						
C6 - C10 Fraction		20	µg/L	<20	<20	<20	<20	<20
C6 - C10 Fraction minus BTEX (F1)		20	µg/L	<20	<20	<20	<20	<20
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	<100
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	μg/L	<2	<2	<2	<2	<2

Sub-Matrix: WATER		Clie	ent sample ID	GCW01	GCW02	GCW03	GCW04	GCW05
	Cli	ent sampli	ng date / time	28-JUN-2012 15:00				
Compound	CAS Number	LOR	Unit	EP1205271-001	EP1205271-002	EP1205271-003	EP1205271-004	EP1205271-005
EP080: BTEXN - Continued								
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
Total Xylenes	1330-20-7	2	µg/L	<2	<2	<2	<2	<2
Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	34.0	34.0	34.0	32.0	36.0
EP068S: Organochlorine Pestic	ide Surrogate							
Dibromo-DDE	21655-73-2	0.1	%	60.6	65.0	63.3	60.4	70.9
EP068T: Organophosphorus Pe	esticide Surrogate							
DEF	78-48-8	0.1	%	57.6	64.6	60.7	57.2	65.5
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	104	102	106	111	111
Toluene-D8	2037-26-5	0.1	%	98.6	100	103	98.0	95.5
4-Bromofluorobenzene	460-00-4	0.1	%	95.6	94.4	98.8	96.1	94.6
EP075(SIM)S: Phenolic Compou	und Surrogates							
Phenol-d6	13127-88-3	0.1	%	27.4	34.9	31.8	32.7	31.5
2-Chlorophenol-D4	93951-73-6	0.1	%	60.2	67.3	65.8	67.9	67.4
2.4.6-Tribromophenol	118-79-6	0.1	%	77.0	84.6	87.9	80.8	87.7
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	50.8	68.9	60.1	62.6	67.4
Anthracene-d10	1719-06-8	0.1	%	90.9	80.5	85.2	86.3	88.7
4-Terphenyl-d14	1718-51-0	0.1	%	92.5	82.4	91.5	86.6	95.0
EP080S: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	103	102	107	111	110
Toluene-D8	2037-26-5	0.1	%	99.1	101	102	98.8	95.8
4-Bromofluorobenzene	460-00-4	0.1	%	92.6	93.1	95.9	95.7	96.1

ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaC03 Carbonate Alkalinity as CaC03 Bicarbonate Alkalinity as CaC03 Total Alkalinity as CaC03 ED041G: Sulfate (Turbidimetric) as SO4 2- by D Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser Chloride 16 ED093F: Dissolved Major Cations Calcium Magnesium	AS Number IO-210-001 3812-32-6 71-52-3 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	ient samplin LOR 1 1 1 1 1 1 1	ng date / time Unit mg/L mg/L mg/L mg/L mg/L	QA01 28-JUN-2012 15:00 EP1205271-006 <1 <1 <1 312 312 1370 10900	 	
ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Bicarbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 ED041G: Sulfate (Turbidimetric) as SO4 2- by D Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser Chloride 10 ED093F: Dissolved Major Cations Calcium Magnesium	IO-210-001 3812-32-6 71-52-3 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1 1 1 1 1	mg/L mg/L mg/L mg/L mg/L	<1 <1 312 312 1370	 	
Hydroxide Alkalinity as CaCO3 DMC Carbonate Alkalinity as CaCO3 3 Bicarbonate Alkalinity as CaCO3 3 Total Alkalinity as CaCO3 3 ED041G: Sulfate (Turbidimetric) as SO4 2- by D 3 Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser 14 Chloride 14 ED093F: Dissolved Major Cations 14 Calcium 14	3812-32-6 71-52-3 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1 1 1 1	mg/L mg/L mg/L mg/L	<1 312 312 1370	 	
Hydroxide Alkalinity as CaCO3 DMC Carbonate Alkalinity as CaCO3 3 Bicarbonate Alkalinity as CaCO3 3 Total Alkalinity as CaCO3 3 ED041G: Sulfate (Turbidimetric) as SO4 2- by D 3 Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser 14 Chloride 14 ED093F: Dissolved Major Cations 14 Calcium 14	3812-32-6 71-52-3 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1 1 1 1	mg/L mg/L mg/L mg/L	<1 312 312 1370	 	
Bicarbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3 ED041G: Sulfate (Turbidimetric) as SO4 2- by D Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser Chloride 16 ED093F: Dissolved Major Cations Calcium Magnesium	71-52-3 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1 1 1 1	mg/L mg/L mg/L	312 312 1370	 	
Total Alkalinity as CaCO3 ED041G: Sulfate (Turbidimetric) as SO4 2- by D Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser Chloride 14 ED093F: Dissolved Major Cations Calcium Magnesium	 DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1 1 1	mg/L mg/L	312 1370	 	
ED041G: Sulfate (Turbidimetric) as SO4 2- by D Sulfate as SO4 - Turbidimetric 14 ED045G: Chloride Discrete analyser Chloride 16 ED093F: Dissolved Major Cations Calcium 16 Magnesium 16	DA 14808-79-8 16887-00-6 7440-70-2 7439-95-4	1	mg/L	1370		
Sulfate as SO4 - Turbidimetric 1. ED045G: Chloride Discrete analyser 1. Chloride 1. ED093F: Dissolved Major Cations 1. Calcium 1. Magnesium 1.	14808-79-8 16887-00-6 7440-70-2 7439-95-4	1	_			
Sulfate as SO4 - Turbidimetric 1.1 ED045G: Chloride Discrete analyser 1.1 Chloride 1.1 ED093F: Dissolved Major Cations 1.1 Calcium 1.1 Magnesium 1.1	14808-79-8 16887-00-6 7440-70-2 7439-95-4	1	_			
Chloride 10 ED093F: Dissolved Major Cations Calcium 20 Magnesium 20	7440-70-2 7439-95-4		mg/L	10900		
ED093F: Dissolved Major Cations Calcium Magnesium	7440-70-2 7439-95-4		mg/L	10900		
Calcium Magnesium	7439-95-4	1			 	
Calcium Magnesium	7439-95-4	1				
Magnesium	7439-95-4		mg/L	370	 	
Sodium		1	mg/L	714	 	
	7440-23-5	1	mg/L	5350	 	
Potassium	7440-09-7	1	mg/L	242	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
	7440-47-3	0.001	mg/L	<0.001	 	
	7440-50-8	0.001	mg/L	0.010	 	
	7440-02-0	0.001	mg/L	0.014	 	
	7439-92-1	0.001	mg/L	<0.001	 	
	7440-66-6	0.005	mg/L	9.30	 	
EK055G: Ammonia as N by Discrete Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.39	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N		0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyser						
Nitrate as N 14	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	screte Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EK067G: Total Phosphorus as P by Discrete Ar	nalyser					
Total Phosphorus as P		0.01	mg/L	0.71	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	342	 	
Total Cations		0.01	meq/L	316	 	
Ionic Balance		0.01	%	3.98	 	

Sub-Matrix: WATER		Clie	ent sample ID	QA01			
	CI		ng date / time	28-JUN-2012 15:00			
			-				
Compound	CAS Number	LOR	Unit	EP1205271-006			
EP026ST: Chemical Oxygen Demand	(Sealed Tube)						
Chemical Oxygen Demand		5	mg/L	422			
EP030: Biochemical Oxygen Demand	I (BOD)						
Biochemical Oxygen Demand		2	mg/L	7			
EP066: Polychlorinated Biphenyls (P	CB)						
Total Polychlorinated biphenyls		1	µg/L	<1			
EP068A: Organochlorine Pesticides ((OC)						
alpha-BHC	319-84-6	0.5	µg/L	<0.5			
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5			
beta-BHC	319-85-7	0.5	µg/L	<0.5			
gamma-BHC	58-89-9	0.5	μg/L	<0.5			
delta-BHC	319-86-8	0.5	µg/L	<0.5			
Heptachlor	76-44-8	0.5	µg/L	<0.5			
Aldrin	309-00-2	0.5	µg/L	<0.5			
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5			
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5			
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5			
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5			
Dieldrin	60-57-1	0.5	µg/L	<0.5			
4.4`-DDE	72-55-9	0.5	µg/L	<0.5			
Endrin	72-20-8	0.5	µg/L	<0.5			
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5			
4.4`-DDD	72-54-8	0.5	µg/L	<0.5			
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5			
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5			
4.4`-DDT	50-29-3	2	µg/L	<2			
Endrin ketone	53494-70-5	0.5 2	µg/L	<0.5 <2			
Methoxychlor	72-43-5	2	µg/L	<0.5			
Total Chlordane (sum)		0.5	μg/L μg/L	<0.5			
Sum of DDD + DDE + DDT Sum of Aldrin + Dieldrin	 309-00-2/60-57-1	0.5	μg/L μg/L	<0.5			
		0.0	₩9'E	-0.0			
EP074A: Monocyclic Aromatic Hydro Benzene		1	μg/L	<1			
Toluene	71-43-2 108-88-3	2	μg/L μg/L	<2			
Ethylbenzene	100-60-3	2	μg/L	<2			
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L μg/L	<2			
Styrene	108-38-3 106-42-3	5	μg/L μg/L	<5			
ortho-Xylene	95-47-6	2	μg/L	<2			
Isopropylbenzene	98-82-8	5	μg/L	<5			
130hi oh Amerizene	90-02-0	<u> </u>	₽9′⊏	-0	1	1	

Sub-Matrix: WATER		Clie	ent sample ID	QA01	 	
	Cli	ient sampli	ng date / time	28-JUN-2012 15:00	 	
Compound	CAS Number	LOR	Unit	EP1205271-006	 	
EP074A: Monocyclic Aromatic Hydrocar	bons - Continued					
n-Propylbenzene	103-65-1	5	µg/L	<5	 	
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	 	
sec-Butylbenzene	135-98-8	5	µg/L	<5	 	
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	 	
tert-Butylbenzene	98-06-6	5	µg/L	<5	 	
p-IsopropyItoluene	99-87-6	5	µg/L	<5	 	
n-Butylbenzene	104-51-8	5	µg/L	<5	 	
EP074B: Oxygenated Compounds						
Vinyl Acetate	108-05-4	50	µg/L	<50	 	
2-Butanone (MEK)	78-93-3	50	µg/L	<50	 	
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	 	
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	 	
EP074C: Sulfonated Compounds						
Carbon disulfide	75-15-0	5	µg/L	<5	 	
EP074D: Fumigants						
2.2-Dichloropropane	594-20-7	5	μg/L	<5	 	
1.2-Dichloropropane	78-87-5	5	μg/L	<5	 	
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	 	
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	 	
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	 	
EP074E: Halogenated Aliphatic Compou	inds					
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	 	
Chloromethane	74-87-3	50	µg/L	<50	 	
Vinyl chloride	75-01-4	50	µg/L	<50	 	
Bromomethane	74-83-9	50	µg/L	<50	 	
Chloroethane	75-00-3	50	µg/L	<50	 	
Trichlorofluoromethane	75-69-4	50	µg/L	<50	 	
1.1-Dichloroethene	75-35-4	5	µg/L	<5	 	
lodomethane	74-88-4	5	µg/L	<5	 	
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	 	
1.1-Dichloroethane	75-34-3	5	µg/L	<5	 	
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	 	
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	 	
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	 	
Carbon Tetrachloride	56-23-5	5	µg/L	<5	 	
1.2-Dichloroethane	107-06-2	5	µg/L	<5	 	
Trichloroethene	79-01-6	5	µg/L	<5 <5	 	
Dibromomethane	74-95-3	5	µg/L	<0	 	 Campbell Brothers Limited Company

Sub-Matrix WATER Clent sample (D) QA01 III IIII IIII IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Concound CAS Number LOR Unit EP205271-066 EP074E: Halogenated Alphatic Compounds - Continued	
11.2-Trichloroethane 79.00.5 5 µg/L <5	
11.2-Trichloroethane 79.00.5 5 µg/L <5	
Totrachionomethane 127.184 5 µgL <5	
1.1.2.7etrachtoroethane 630 206 5 µgl, <5	
trans.14.Dichloro-2-butene 110.57.6 5 µg/L <5	
cis-1.4-Dichloro-2-buten 1476-115 5 µg/L <5	
1.1.2.2-Tertachlorosethane 79-34-5 5 μg/L <5	
1.2.3-Trichloropropane 96-184 5 µg/L <5 Image: Second Secon	
Pentachloroethane 76-01-7 5 μg/L <5	
1.2-Dibromo-3-chloropropane 96-12.8 5 µg/L <5	
Hexachlorobutadiene 87.68.3 5 µg/L <5	
EP074F: Halogenated Aromatic Compounds V Second S	
Chlorobenzene 108-90-7 5 µg/L <5	
Bromobenzene 108-86-1 5 μg/L <5	
2-Chlorotoluene 95.49.8 5 µg/L <5	
4-Chlorotoluene 106-43-4 5 µg/L <5	
1.3-Dichlorobenzene 541-73-1 5 µg/L <5	
1.4-Dichlorobenzene 100-46-7 5 µg/L <5	
1.2-Dichlorobenzene 95-50-1 5 µg/L <5	
1.2.4-Trichlorobenzene 120-82-1 5 μg/L <5	
1.2.3-Trichlorobenzene 87-61-6 5 µg/L <5	
EP074G: Trihalomethanes Chloroform 67-66-3 5 µg/L <5 Image: Second Seco	
Chloroform 67-66-3 5 μg/L <5	
Bronodichloromethane 75-27-4 5 μg/L <5	
Dibromochloromethane 124-48-1 5 μg/L <5	
Bromoform 75-25-2 5 μg/L <5	
EP074H: Naphthalene 91-20-3 7 μg/L <7	
Naphthalene 91-20-3 7 μg/L <7	
EP075(SIM)A: Phenolic Compounds	
Phenol 108-95-2 1.0 μg/L <1.0	
2-Chlorophenol 95-57-8 1.0 μg/L <1.0	
2-Methylphenol 95-48-7 1.0 µg/L <1.0	
3- & 4-Methylphenol 1319-77-3 2.0 μg/L <2.0	
2-Nitrophenol 88-75-5 1.0 µg/L <1.0	
2.4-Dimethylphenol 105-67-9 1.0 µg/L <1.0	
2.4-Dichlorophenol 120-83-2 1.0 µg/L <1.0	
2.6-Dichlorophenol 87-65-0 1.0 µg/L <1.0	
4-Chloro-3-Methylphenol 59-50-7 1.0 μg/L <1.0	

Sub-Matrix: WATER		Clie	ent sample ID	QA01			
	Cli	ent samplii	ng date / time	28-JUN-2012 15:00			
Compound	CAS Number	LOR	Unit	EP1205271-006			
EP075(SIM)A: Phenolic Compounds - Con	tinued						
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0			
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0			
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0			
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0			
Acenaphthylene	208-96-8	1.0	μg/L	<1.0			
Acenaphthene	83-32-9	1.0	μg/L	<1.0			
Fluorene	86-73-7	1.0	μg/L	<1.0			
Phenanthrene	85-01-8	1.0	μg/L	<1.0			
Anthracene	120-12-7	1.0	µg/L	<1.0			
Fluoranthene	206-44-0	1.0	µg/L	<1.0			
Pyrene	129-00-0	1.0	µg/L	<1.0			
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0			
Chrysene	218-01-9	1.0	μg/L	<1.0			
Benzo(b)fluoranthene	205-99-2	1.0	μg/L	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0			
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0			
[^] Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5			
^ Benzo(a)pyrene TEQ (WHO)		0.5	µg/L	<0.5			
EP080/071: Total Petroleum Hydrocarbon	s						
C6 - C9 Fraction		20	µg/L	<20			
C10 - C14 Fraction		50	µg/L	<50			
C15 - C28 Fraction		100	µg/L	<100			
C29 - C36 Fraction		50	µg/L	<50			
[^] C10 - C36 Fraction (sum)		50	µg/L	<50			
EP080/071: Total Recoverable Hydrocarb	ons - NEPM 201	0 Draft					
C6 - C10 Fraction		20	μg/L	<20			
C6 - C10 Fraction minus BTEX (F1)		20	μg/L	<20			
>C10 - C16 Fraction		100	μg/L	<100			
>C16 - C34 Fraction		100	µg/L	<100			
>C34 - C40 Fraction		100	µg/L	<100			
^ >C10 - C40 Fraction (sum)		100	µg/L	<100			
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1			
Toluene	108-88-3	2	μg/L	<2			
			10		1	1	Campbell Brothers Limited Company

Sub-Matrix: WATER		Clie	ent sample ID	QA01	 	
	Cli	ent sampli	ng date / time	28-JUN-2012 15:00	 	
Compound	CAS Number	LOR	Unit	EP1205271-006	 	
EP080: BTEXN - Continued						
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes	1330-20-7	2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	0.1	%	34.0	 	
EP068S: Organochlorine Pesticide	Surrogate					
Dibromo-DDE	21655-73-2	0.1	%	67.5	 	
EP068T: Organophosphorus Pestic	cide Surrogate					
DEF	78-48-8	0.1	%	60.3	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	108	 	
Toluene-D8	2037-26-5	0.1	%	95.9	 	
4-Bromofluorobenzene	460-00-4	0.1	%	95.8	 	
EP075(SIM)S: Phenolic Compound	Surrogates					
Phenol-d6	13127-88-3	0.1	%	30.3	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	62.6	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	87.2	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	55.0	 	
Anthracene-d10	1719-06-8	0.1	%	81.7	 	
4-Terphenyl-d14	1718-51-0	0.1	%	84.4	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	108	 	
Toluene-D8	2037-26-5	0.1	%	95.6	 	
4-Bromofluorobenzene	460-00-4	0.1	%	93.7	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	27.4	136.2
EP068S: Organochlorine Pesticide S	Surrogate		
Dibromo-DDE	21655-73-2	50.0	146.3
EP068T: Organophosphorus Pestici	de Surrogate		
DEF	78-48-8	26.8	153.4
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	62.3	133.9
Toluene-D8	2037-26-5	74.5	124.3
4-Bromofluorobenzene	460-00-4	63.9	118.5
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	10.0	67.2
2-Chlorophenol-D4	93951-73-6	29.4	119.5
2.4.6-Tribromophenol	118-79-6	10.0	130.8
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	33.8	130.7
Anthracene-d10	1719-06-8	42.7	126.5
4-Terphenyl-d14	1718-51-0	40.5	142.4
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	60.5	141.2
Toluene-D8	2037-26-5	73.4	126
4-Bromofluorobenzene	460-00-4	59.6	125.3

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

e au.food.agriculture.twb@sgs.com

Report of Analysis

TW12-04936

Client:				040000	
GHD PTY LTD			Order Number:	3128991	
PO BOX 3106 ADELAIDE TERRACE PERTH WA 6832			Report Date: Received Date:	26-June-2012 06-June-2012	
Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5 SOIL	TW12-04936.003 GCS02_0.25-3.0 SOIL	TW12-04936.005 GCS03_0.25-3.0 SOIL	TW12-04936.006 GCS04_0-0.3 SOIL
Organic Nitrogen	mg/kg	720	650	710	960
ACIDITY					
pH - Water	pH units	8.69	9.40	9.27	8.57
MAJOR ELEMENTS					
Ammonium Nitrogen	mg/kg	1.0	0.75	0.80	1.5
Nitrate + Nitrite	mg/kg	15	4	1	2
Nitrate Nitrogen	mg/kg	15	4	1	2
Nitrite Nitrogen	mg/kg	<1	<1	<1	<1
Potassium	mg/kg	15	6	55	18
Phosphorus - Colwell extr	mg/kg	19	8	6	33
Nitrogen	mg/kg	738	654	716	966
Total Kjeldahl Nitrogen	mg/kg	723	650	715	964
SECONDARY ELEMENTS					
Calcium Carbonate	%	82	97	96	87
Calcium	mg/kg	4150	3950	3790	4650
Magnesium	mg/kg	160	147	319	104
TRACE ELEMENTS					
Copper	mg/kg	<0.1	<0.1	<0.1	0.1
Zinc	mg/kg	0.5	0.6	0.3	0.7
Manganese	mg/kg	<1	<1	<1	<1
Iron	mg/kg	7.9	1.5	3.2	7.2
Boron	mg/kg	2.0	0.4	1.2	0.8
ORGANIC MATTER					
Organic Carbon	%	1.4	<0.3	<0.3	1.9
SALINITY					
Chloride	mg/kg	110	140	3000	69
Electrical Conductivity	dS/m	0.17	0.14	1.81	0.13
Sodium	mg/kg	129	115	1160	123
Total Soluble Salts	%	0.06	0.05	0.62	0.04
EXCHANGEABLE CATIONS					
Cation Exchange	meq/100g	22.7	21.5	26.8	24.7
Exchangeable Sodium	meq/100g	0.56	0.50	5.06	0.54
Exchangeable Sodium Percent	%	2.5	2.3	18.9	2.2
Exchangeable Potassium	meq/100g	0.04	0.01	0.14	0.05
Exchangeable Potassium Percent	%	0.2	<0.1	0.5	0.2
Exchangeable Calcium	meq/100g	20.8	19.7	19.0	23.3

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 ` t +61 (0)7 4633 0599 ~ f +61 (0)7 4633 0711 ~

www.au.sgs.com

Report of Analysis

Page 2/6

TW12-04936

Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

214 McDougall Street

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5 SOIL	TW12-04936.003 GCS02_0.25-3.0 SOIL	TW12-04936.005 GCS03_0.25-3.0 SOIL	TW12-04936.006 GCS04_0-0.3 SOIL
Exchangeable Calcium Percent	%	91.5	91.9	70.7	94.2
Exchangeable Magnesium	meg/100g	1.33	1.22	2.65	0.86
Exchangeable Magnesium Percent	%	5.9	5.7	9.9	3.5
Exchangeable Aluminium	meg/100g	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Exchangeable Aluminium Percent	%	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Calcium/Magnesium Ratio		15.60	16.15	7.14	26.95
WET CHEMISTRY					
Phosphorus	mg/kg	811	301	277	580
Sulphur	mg/kg	1130	1560	1730	944
OTHER					
Phosphorus Buffer Index		92.7	615.0	87.6	210.4
P Sorption Index		22	24	23	20
As Received Moisture	%	10.8	22.1	18.9	7.9
PHYSICAL TESTS			ĺ		
Calcium Chloride treated Category		1	1	1	1
Water treated Category		3	3	2	3
Large Particles <20mm >10mm	%	7.5	6.1	2.1	0.5
Large Particles >20mm	%	0.8	<0.1	<0.1	<0.1
Bulk Density	kg/L	1	1	1	1
Subcontracted Analysis					
Field Capacity	%	15.8	13.4	24.0	12.3
Wilting Point	%	6.4	4.3	11.2	5.8
Water at Saturation	%	33.8	36.4	39.3	43.0

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 M

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

Page 3/6

TW12-04936

Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

214 McDougall Street

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.007 GCS05_0.2-0.6 SOIL	TW12-04936.009 QAGC_1 SOIL		
Organic Nitrogen	mg/kg	830	730		
ACIDITY					
pH - Water	pH units	9.18	9.20		
MAJOR ELEMENTS				1	
Ammonium Nitrogen	mg/kg	1.0	1.0		
Nitrate + Nitrite	mg/kg	6	5		
Nitrate Nitrogen	mg/kg	5	5		
Nitrite Nitrogen	mg/kg	<1	<1		
Potassium	mg/kg	11	5		
Phosphorus - Colwell extr	mg/kg	9	7		
Nitrogen	mg/kg	833	739		
Total Kjeldahl Nitrogen	mg/kg	827	734		
SECONDARY ELEMENTS	0.0				
Calcium Carbonate	%	95	94		
Calcium	mg/kg	4090	4090		
Magnesium	mg/kg	162	149		
TRACE ELEMENTS	0.0				
Copper	mg/kg	<0.1	<0.1		
Zinc	mg/kg	0.7	0.3		
Manganese	mg/kg	<1	<1		
Iron	mg/kg	2.0	2.0		
Boron	mg/kg	0.6	0.4		
ORGANIC MATTER					
Organic Carbon	%	0.4	0.4		
SALINITY					
Chloride	mg/kg	29	27		
Electrical Conductivity	dS/m	0.10	0.09		
Sodium	mg/kg	94	93		
Total Soluble Salts	%	0.03	0.03		
EXCHANGEABLE CATIONS	,,,				
Cation Exchange	meq/100g	22.3	22.1		
Exchangeable Sodium	meq/100g	0.41	0.40		
Exchangeable Sodium Percent	%	1.8	1.8		
Exchangeable Potassium	meq/100g	0.03	0.01		
Exchangeable Potassium Percent	%	0.1	<0.1		
Exchangeable Calcium	meq/100g	20.5	20.5		
Exchangeable Calcium Percent	%	92.0	92.5		
Exchangeable Magnesium	meq/100g	1.35	1.24		
Exchangeable Magnesium Percent	%	6.0	5.6		
Exchangeable Aluminium	meq/100g	Not Applicable	Not Applicable		
Exchangeable Aluminium Percent		Not Applicable	Not Applicable		
	%				
Calcium/Magnesium Ratio		15.20	16.51		

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

Page 4/6

TW12-04936

214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.007 GCS05_0.2-0.6 SOIL	TW12-04936.009 QAGC_1 SOIL		
Phosphorus	mg/kg	299	289		
Sulphur	mg/kg	1130	1070		
OTHER					
Phosphorus Buffer Index		114.1	112.0		
P Sorption Index		26	26		
As Received Moisture	%	13.9	13.1		
PHYSICAL TESTS					
Calcium Chloride treated Category		1	1		
Water treated Category		3	3	1	
Large Particles <20mm >10mm	%	2.3	5.3		
Large Particles >20mm	%	<0.1	<0.1		
Bulk Density	kg/L	1	1		
Subcontracted Analysis				1	
Field Capacity	%	11.6	9.6		
Wilting Point	%	4.7	4.3		
Water at Saturation	%	37.6	37.3		

Results are on an 'air dried' basis.

Analysed Between 06/06/2012 - 26/06/2012

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 McE

214 McDougall Street,

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599 f +61 (0)7 4633 0711

Report of Analysis

Page 5/6

TW12-04936

Method of Analysis			
Analysis	Unit	Det.Lim.	Method
Phosphorus	mg/kg	10	MIN001
Sulphur	mg/kg	10	MIN001
Copper	mg/kg	0.1	SOL001/9/10/12
Zinc	mg/kg	0.1	SOL001/9/10/12
Manganese	mg/kg	1.0	SOL001/9/10/12
Iron	mg/kg	1.0	SOL001/9/10/12
Boron	mg/kg	0.2	SOL001/13
Ammonium Nitrogen	mg/kg	0.05	SOL030
Chloride	mg/kg	1	SOL030
Nitrate + Nitrite	mg/kg	1	SOL030
Nitrate Nitrogen	mg/kg	1	SOL030
Nitrite Nitrogen	mg/kg	1	SOL030
pH - Water	pH units	0.01	SOL003/SOL001/2
Electrical Conductivity	dS/m	0.01	SOL003/SOL001/2
Calcium Carbonate	%	1	SOL004
Sodium	mg/kg	1	SOL044
Potassium	mg/kg	1	SOL044
Calcium	mg/kg	1	SOL044
Magnesium	mg/kg	1	SOL044
Cation Exchange	meq/100g	0.01	SOL044
Exchangeable Sodium	meq/100g	0.01	SOL044
Exchangeable Sodium Percent	%	0.1	SOL044
Exchangeable Potassium	meq/100g	0.01	SOL044
Exchangeable Potassium Percent	%	0.1	SOL044
Exchangeable Calcium	meq/100g	0.01	SOL044
Exchangeable Calcium Percent	%	0.1	SOL044
Exchangeable Magnesium	meq/100g	0.01	SOL044
Exchangeable Magnesium Percent	%	0.1	SOL044
Exchangeable Aluminium	meq/100g	0.01	SOL044
Exchangeable Aluminium Percent	%	0.1	SOL044
Calcium/Magnesium Ratio		0.01	SOL044
Organic Carbon	%	0.3	CAR002/SOL002/1
Phosphorus - Colwell extr	mg/kg	1	SOL005/001/4
Phosphorus Buffer Index		0.1	SOL014
P Sorption Index		1	SOL026
Calcium Chloride treated Category			AS4419-2003 Appendix G
Water treated Category			AS4419-2003 Appendix G

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

ABN 44 000 964 278 Member of the SGS Group (Société Générale de Surveillance)

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350

t+61 (0)7 4633 0599 f +61 (0)7 4633 0711

Report of Analysis

Page 6/6

TW12-04936

Field Capacity	%	0.1	
Wilting Point	%	0.1	
		-	
Water at Saturation	%	0.1	
Large Particles <20mm >10mm	%	0.1	
Large Particles >20mm	%	0.1	
Nitrogen	mg/kg	300	PRN002
Organic Nitrogen	mg/kg	1	PRN001/SOL030
Total Kjeldahl Nitrogen	mg/kg	1	
As Received Moisture	%	0.1	
Bulk Density	kg/L		SOL029
Total Soluble Salts	%	0.01	SOL003/SOL001/2

The analyses presented in the report refer exclusively to the samples analysed.

The presented report can only be reproduced in its entirety.

Keegan Roache - PSW Section Manager

For and on behalf of SGS Australia Pty Ltd

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

SGS Food & Agriculture Laboratory 214 McDougall Street

Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

e au.food.agriculture.twb@sgs.com

Report of Analysis

TW12-04936

Client:				0 4 0 0 0 0 ⁴	
GHD PTY LTD			Order Number:	3128991	
PO BOX 3106 ADELAIDE TERRACE PERTH WA 6832			Report Date: Received Date:	16-August-2012 06-June-2012	
Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5 SOIL	TW12-04936.003 GCS02_0.25-3.0 SOIL	TW12-04936.005 GCS03_0.25-3.0 SOIL	TW12-04936.006 GCS04_0-0.3 SOIL
Organic Nitrogen	mg/kg	720	650	710	960
ACIDITY	ilig/ilig				
pH - Water	pH units	8.69	9.40	9.27	8.57
MAJOR ELEMENTS	P. 1. 1. 1. 10				
Ammonium Nitrogen	mg/kg	1.0	0.75	0.80	1.5
Nitrate + Nitrite	mg/kg	15	4	1	2
Nitrate Nitrogen	mg/kg	15	4	1	2
Nitrite Nitrogen	mg/kg	<1	<1	<1	<1
Potassium	mg/kg	15	6	55	18
Phosphorus - Colwell extr	mg/kg	19	8	6	33
Nitrogen	mg/kg	738	654	716	966
Total Kjeldahl Nitrogen	mg/kg	723	650	715	964
SECONDARY ELEMENTS					
Calcium Carbonate	%	82	97	96	87
Calcium	mg/kg	4150	3950	3790	4650
Magnesium	mg/kg	160	147	319	104
TRACE ELEMENTS					
Copper	mg/kg	<0.1	<0.1	<0.1	0.1
Zinc	mg/kg	0.5	0.6	0.3	0.7
Manganese	mg/kg	<1.0	<1.0	<1.0	<1.0
Iron	mg/kg	7.9	1.5	3.2	7.2
Boron	mg/kg	2.0	0.4	1.2	0.8
ORGANIC MATTER					
Organic Carbon	%	1.4	<0.3	<0.3	1.9
SALINITY					
Chloride	mg/kg	110	140	3000	69
Electrical Conductivity	dS/m	0.17	0.14	1.81	0.13
Sodium	mg/kg	129	115	1160	123
Total Soluble Salts	%	0.06	0.05	0.62	0.04
EXCHANGEABLE CATIONS					
Cation Exchange	meq/100g	22.7	21.5	26.8	24.7
Exchangeable Sodium	meq/100g	0.56	0.50	5.06	0.54
Exchangeable Sodium Percent	%	2.5	2.3	18.9	2.2
Exchangeable Potassium	meq/100g	0.04	0.01	0.14	0.05
Exchangeable Potassium Percent	%	0.2	<0.1	0.5	0.2
Exchangeable Calcium	meq/100g	20.8	19.7	19.0	23.3

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t +61 (0)7 4633 0599 f +61 (0)7 4633 0711

www.au.sgs.com

Page 2/6

TW12-04936

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350 t +61 (0)7 4633 0599 f +61 (0)7 4633 0711 e au.food.agriculture.twb@sgs.com

Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5	TW12-04936.003 GCS02_0.25-3.0	TW12-04936.005 GCS03_0.25-3.0	TW12-04936.006 GCS04_0-0.3
		SOIL	SOIL	SOIL	SOIL
Exchangeable Calcium Percent	%	91.5	91.9	70.7	94.2
Exchangeable Magnesium	meq/100g	1.33	1.22	2.65	0.86
Exchangeable Magnesium Percent	%	5.9	5.7	9.9	3.5
Exchangeable Aluminium	meq/100g	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Exchangeable Aluminium Percent	%	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Calcium/Magnesium Ratio		15.60	16.15	7.14	26.95
WET CHEMISTRY					
Phosphorus	mg/kg	811	301	277	580
Sulphur	mg/kg	1130	1560	1730	944
OTHER					
Phosphorus Buffer Index		92.7	615.0	87.6	210.4
P Sorption Index		22	24	23	20
Air Dry Moisture	%	0.7	0.4	0.5	1.0
PHYSICAL TESTS					
Calcium Chloride treated Category		1	1	1	1
Water treated Category		3	3	2	3
Large Particles <20mm >10mm	%	7.5	6.1	2.1	0.5
Large Particles >20mm	%	0.8	<0.1	<0.1	<0.1
Bulk Density	g/L	1200	1000	1000	1200
Subcontracted Analysis					
Field Capacity	%	15.8	13.4	24.0	12.3
Wilting Point	%	6.4	4.3	11.2	5.8
Water at Saturation	%	33.8	36.4	39.3	43.0

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 Mc

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

Page 3/6

TW12-04936

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350 t +61 (0)7 4633 0599 f +61 (0)7 4633 0711 e au.food.agriculture.twb@sgs.com

Analysis	Unit	TW12-04936.007 GCS05_0.2-0.6 SOIL	TW12-04936.009 QAGC_1 SOIL	
Osnania Nilanana				
Organic Nitrogen	mg/kg	830	730	
ACIDITY				
pH - Water	pH units	9.18	9.20	
MAJOR ELEMENTS		4.0	4.0	
Ammonium Nitrogen	mg/kg	1.0	1.0	
Nitrate + Nitrite	mg/kg	6	5	
Nitrate Nitrogen	mg/kg	5	5	
Nitrite Nitrogen	mg/kg	<1	<1	
Potassium	mg/kg	11	5	
Phosphorus - Colwell extr	mg/kg	9	7	
Nitrogen	mg/kg	833	739	
Total Kjeldahl Nitrogen	mg/kg	827	734	
SECONDARY ELEMENTS				
Calcium Carbonate	%	95	94	
Calcium	mg/kg	4090	4090	
Magnesium	mg/kg	162	149	
TRACE ELEMENTS				
Copper	mg/kg	<0.1	<0.1	
Zinc	mg/kg	0.7	0.3	
Manganese	mg/kg	<1.0	<1.0	
Iron	mg/kg	2.0	2.0	
Boron	mg/kg	0.6	0.4	
ORGANIC MATTER	5 5			
Organic Carbon	%	0.4	0.4	
SALINITY		-		
Chloride	mg/kg	29	27	
Electrical Conductivity	dS/m	0.10	0.09	
Sodium	mg/kg	94	93	
Total Soluble Salts	%	0.03	0.03	
EXCHANGEABLE CATIONS	70	0.00	0.00	
Cation Exchange	meq/100g	22.3	22.1	
Exchangeable Sodium	meq/100g	0.41	0.40	
Exchangeable Sodium Percent	%	1.8	1.8	
Exchangeable Potassium	meq/100g	0.03	0.01	
		0.03	<0.1	
Exchangeable Potassium Percent	% meq/100g	-		
Exchangeable Calcium		20.5	20.5	
Exchangeable Calcium Percent	%	92.0	92.5	
Exchangeable Magnesium	meq/100g	1.35	1.24	
Exchangeable Magnesium Percent	%	6.0	5.6	
Exchangeable Aluminium	meq/100g	Not Applicable	Not Applicable	
Exchangeable Aluminium Percent	%	Not Applicable	Not Applicable	
Calcium/Magnesium Ratio		15.20	16.51	

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

Page 4/6

TW12-04936

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350 t +61 (0)7 4633 0599 f +61 (0)7 4633 0711 e au.food.agriculture.twb@sgs.com

Analysis TW12-04936.007 TW12-04936.009 Unit GCS05_0.2-0.6 QAGC_1 SOIL SOIL Phosphorus 299 289 mg/kg Sulphur mg/kg 1130 1070 OTHER Phosphorus Buffer Index 114.1 112.0 P Sorption Index 26 26 Air Dry Moisture % 0.5 0.5 PHYSICAL TESTS Calcium Chloride treated Category 1 1 Water treated Category 3 3 Large Particles <20mm >10mm % 2.3 5.3 <0.1 Large Particles >20mm % <0.1 Bulk Density g/L 1100 1100 Subcontracted Analysis % 11.6 9.6 Field Capacity Wilting Point % 4.3 4.7 Water at Saturation % 37.3 37.6

Results are on an 'air dried' basis.

Analysed Between 06/06/2012 - 16/08/2012

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 McDou

214 McDougall Street,

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

Report of Analysis

Page 5/6

TW12-04936

Method of Analysis			
Analysis	Unit	Det.Lim.	Method
Phosphorus	mg/kg	10	MIN001
Sulphur	mg/kg	10	MIN001
Copper	mg/kg	0.1	SOL001/9/10/12
Zinc	mg/kg	0.1	SOL001/9/10/12
Manganese	mg/kg	1.0	SOL001/9/10/12
Iron	mg/kg	1.0	SOL001/9/10/12
Boron	mg/kg	0.2	SOL001/13
Ammonium Nitrogen	mg/kg	0.05	SOL030
Chloride	mg/kg	1	SOL030
Nitrate + Nitrite	mg/kg	1	SOL030
Nitrate Nitrogen	mg/kg	1	SOL030
Nitrite Nitrogen	mg/kg	1	SOL030
pH - Water	pH units	0.01	SOL003/SOL001/2
Electrical Conductivity	dS/m	0.01	SOL003/SOL001/2
Calcium Carbonate	%	1	SOL004
Sodium	mg/kg	1	SOL044
Potassium	mg/kg	1	SOL044
Calcium	mg/kg	1	SOL044
Magnesium	mg/kg	1	SOL044
Cation Exchange	meq/100g	0.01	SOL044
Exchangeable Sodium	meq/100g	0.01	SOL044
Exchangeable Sodium Percent	%	0.1	SOL044
Exchangeable Potassium	meq/100g	0.01	SOL044
Exchangeable Potassium Percent	%	0.1	SOL044
Exchangeable Calcium	meq/100g	0.01	SOL044
Exchangeable Calcium Percent	%	0.1	SOL044
Exchangeable Magnesium	meq/100g	0.01	SOL044
Exchangeable Magnesium Percent	%	0.1	SOL044
Exchangeable Aluminium	meq/100g	0.01	SOL044
Exchangeable Aluminium Percent	%	0.1	SOL044
Calcium/Magnesium Ratio		0.01	SOL044
Organic Carbon	%	0.3	CAR002/SOL002/1
Phosphorus - Colwell extr	mg/kg	1	SOL005/001/4
Phosphorus Buffer Index		0.1	SOL014
P Sorption Index		1	SOL026
Calcium Chloride treated Category			AS4419-2003 Appendix G
Water treated Category			AS4419-2003 Appendix G

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

ABN 44 000 964 278 Member of the SGS Group (Société Générale de Surveillance)

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

Report of Analysis

Page 6/6

TW12-04936

Field Capacity	%	0.1	
Wilting Point	%	0.1	
Water at Saturation	%	0.1	
Large Particles <20mm >10mm	%	0.1	
Large Particles >20mm	%	0.1	
Nitrogen	mg/kg	300	PRN002
Organic Nitrogen	mg/kg	1	PRN001/SOL030
Total Kjeldahl Nitrogen	mg/kg	1	
Total Soluble Salts	%	0.01	SOL003/SOL001/2
Bulk Density	g/L		SOL029
Air Dry Moisture	%	0.1	

The analyses presented in the report refer exclusively to the samples analysed.

The presented report can only be reproduced in its entirety.

Keegan Roache - PSW Section Manager

For and on behalf of SGS Australia Pty Ltd

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sqs.com

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

e au.food.agriculture.twb@sgs.com

Report of Analysis

TW12-04936

GHD PTY LTD			Order Number:	3128991	
PO BOX 3106			Order Number:		
ADELAIDE TERRACE PERTH WA 6832			Report Date: Received Date:	04-July-2012 06-June-2012	
Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5 SOIL	TW12-04936.003 GCS02_0.25-3.0 SOIL	TW12-04936.005 GCS03_0.25-3.0 SOIL	TW12-04936.006 GCS04_0-0.3 SOIL
Organic Nitrogen	mg/kg	720	650	710	960
ACIDITY					
pH - Water	pH units	8.69	9.40	9.27	8.57
MAJOR ELEMENTS	•				
Ammonium Nitrogen	mg/kg	1.0	0.75	0.80	1.5
Nitrate + Nitrite	mg/kg	15	4	1	2
Nitrate Nitrogen	mg/kg	15	4	1	2
Nitrite Nitrogen	mg/kg	<1	<1	<1	<1
Potassium	mg/kg	15	6	55	18
Phosphorus - Colwell extr	mg/kg	19	8	6	33
Nitrogen	mg/kg	738	654	716	966
Total Kjeldahl Nitrogen	mg/kg	723	650	715	964
SECONDARY ELEMENTS					
Calcium Carbonate	%	82	97	96	87
Calcium	mg/kg	4150	3950	3790	4650
Magnesium	mg/kg	160	147	319	104
TRACE ELEMENTS					
Copper	mg/kg	<0.1	<0.1	<0.1	0.1
Zinc	mg/kg	0.5	0.6	0.3	0.7
Manganese	mg/kg	<1	<1	<1	<1
Iron	mg/kg	7.9	1.5	3.2	7.2
Boron	mg/kg	2.0	0.4	1.2	0.8
ORGANIC MATTER					
Organic Carbon	%	1.4	<0.3	<0.3	1.9
SALINITY					
Chloride	mg/kg	110	140	3000	69
Electrical Conductivity	dS/m	0.17	0.14	1.81	0.13
Sodium	mg/kg	129	115	1160	123
Total Soluble Salts	%	0.06	0.05	0.62	0.04
EXCHANGEABLE CATIONS					
Cation Exchange	meq/100g	22.7	21.5	26.8	24.7
Exchangeable Sodium	meq/100g	0.56	0.50	5.06	0.54
Exchangeable Sodium Percent	%	2.5	2.3	18.9	2.2
Exchangeable Potassium	meq/100g	0.04	0.01	0.14	0.05
Exchangeable Potassium Percent	%	0.2	<0.1	0.5	0.2
Exchangeable Calcium	meq/100g	20.8	19.7	19.0	23.3

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 ` t +61 (0)7 4633 0599 ~ f +61 (0)7 4633 0711 ~

www.au.sgs.com

Page 2/6

TW12-04936

Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

214 McDougall Street

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.001 GCS01_0.15-0.5 SOIL	TW12-04936.003 GCS02_0.25-3.0 SOIL	TW12-04936.005 GCS03_0.25-3.0 SOIL	TW12-04936.006 GCS04_0-0.3 SOIL
Exchangeable Calcium Percent	%	91.5	91.9	70.7	94.2
Exchangeable Magnesium	meq/100g	1.33	1.22	2.65	0.86
Exchangeable Magnesium Percent	%	5.9	5.7	9.9	3.5
Exchangeable Aluminium	meq/100g	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Exchangeable Aluminium Percent	%	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Calcium/Magnesium Ratio		15.60	16.15	7.14	26.95
WET CHEMISTRY					
Phosphorus	mg/kg	811	301	277	580
Sulphur	mg/kg	1130	1560	1730	944
OTHER					
Phosphorus Buffer Index		92.7	615.0	87.6	210.4
P Sorption Index		22	24	23	20
Air Dry Moisture	%	0.7	0.4	0.5	1.0
PHYSICAL TESTS					
Calcium Chloride treated Category		1	1	1	1
Water treated Category		3	3	2	3
Large Particles <20mm >10mm	%	7.5	6.1	2.1	0.5
Large Particles >20mm	%	0.8	<0.1	<0.1	<0.1
Bulk Density	kg/L	1	1	1	1
Subcontracted Analysis	-				
Field Capacity	%	15.8	13.4	24.0	12.3
Wilting Point	%	6.4	4.3	11.2	5.8
Water at Saturation	%	33.8	36.4	39.3	43.0

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 M

214 McDougall Street,

Page 3/6

TW12-04936

Toowoomba QLD 4350 t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

214 McDougall Street

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.007 GCS05_0.2-0.6 SOIL	TW12-04936.009 QAGC_1 SOIL		
Organic Nitrogen	mg/kg	830	730		
ACIDITY					
pH - Water	pH units	9.18	9.20		
MAJOR ELEMENTS				1	
Ammonium Nitrogen	mg/kg	1.0	1.0		
Nitrate + Nitrite	mg/kg	6	5		
Nitrate Nitrogen	mg/kg	5	5		
Nitrite Nitrogen	mg/kg	<1	<1		
Potassium	mg/kg	11	5		
Phosphorus - Colwell extr	mg/kg	9	7		
Nitrogen	mg/kg	833	739		
Total Kjeldahl Nitrogen	mg/kg	827	734		
SECONDARY ELEMENTS	0.0				
Calcium Carbonate	%	95	94		
Calcium	mg/kg	4090	4090		
Magnesium	mg/kg	162	149		
TRACE ELEMENTS	0.0				
Copper	mg/kg	<0.1	<0.1		
Zinc	mg/kg	0.7	0.3		
Manganese	mg/kg	<1	<1		
Iron	mg/kg	2.0	2.0		
Boron	mg/kg	0.6	0.4		
ORGANIC MATTER					
Organic Carbon	%	0.4	0.4		
SALINITY					
Chloride	mg/kg	29	27		
Electrical Conductivity	dS/m	0.10	0.09		
Sodium	mg/kg	94	93		
Total Soluble Salts	%	0.03	0.03		
EXCHANGEABLE CATIONS	,,,				
Cation Exchange	meq/100g	22.3	22.1		
Exchangeable Sodium	meq/100g	0.41	0.40		
Exchangeable Sodium Percent	%	1.8	1.8		
Exchangeable Potassium	meq/100g	0.03	0.01		
Exchangeable Potassium Percent	%	0.1	<0.1		
Exchangeable Calcium	meq/100g	20.5	20.5		
Exchangeable Calcium Percent	%	92.0	92.5		
Exchangeable Magnesium	meq/100g	1.35	1.24		
Exchangeable Magnesium Percent	%	6.0	5.6		
Exchangeable Aluminium	meq/100g	Not Applicable	Not Applicable		
Exchangeable Aluminium Percent		Not Applicable	Not Applicable		
	%				
Calcium/Magnesium Ratio		15.20	16.51		

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

Page 4/6

TW12-04936

214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599

f +61 (0)7 4633 0711

e au.food.agriculture.twb@sgs.com

SGS Food & Agriculture Laboratory

Analysis	Unit	TW12-04936.007 GCS05_0.2-0.6 SOIL	TW12-04936.009 QAGC_1 SOIL	
Phosphorus	mg/kg	299	289	
Sulphur	mg/kg	1130	1070	
OTHER				
Phosphorus Buffer Index		114.1	112.0	
P Sorption Index		26	26	
Air Dry Moisture	%	0.5	0.5	
PHYSICAL TESTS				
Calcium Chloride treated Category		1	1	
Water treated Category		3	3	
Large Particles <20mm >10mm	%	2.3	5.3	
Large Particles >20mm	%	<0.1	<0.1	
Bulk Density	kg/L	1	1	
Subcontracted Analysis				
Field Capacity	%	11.6	9.6	
Wilting Point	%	4.7	4.3	
Water at Saturation	%	37.6	37.3	1

Results are on an 'air dried' basis.

Analysed Between 06/06/2012 - 04/07/2012

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd 214 McE

214 McDougall Street,

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350

t +61 (0)7 4633 0599 f +61 (0)7 4633 0711

Report of Analysis

Page 5/6

TW12-04936

Method of Analysis			
Analysis	Unit	Det.Lim.	Method
Phosphorus	mg/kg	10	MIN001
Sulphur	mg/kg	10	MIN001
Copper	mg/kg	0.1	SOL001/9/10/12
Zinc	mg/kg	0.1	SOL001/9/10/12
Manganese	mg/kg	1.0	SOL001/9/10/12
Iron	mg/kg	1.0	SOL001/9/10/12
Boron	mg/kg	0.2	SOL001/13
Ammonium Nitrogen	mg/kg	0.05	SOL030
Chloride	mg/kg	1	SOL030
Nitrate + Nitrite	mg/kg	1	SOL030
Nitrate Nitrogen	mg/kg	1	SOL030
Nitrite Nitrogen	mg/kg	1	SOL030
pH - Water	pH units	0.01	SOL003/SOL001/2
Electrical Conductivity	dS/m	0.01	SOL003/SOL001/2
Calcium Carbonate	%	1	SOL004
Sodium	mg/kg	1	SOL044
Potassium	mg/kg	1	SOL044
Calcium	mg/kg	1	SOL044
Magnesium	mg/kg	1	SOL044
Cation Exchange	meq/100g	0.01	SOL044
Exchangeable Sodium	meq/100g	0.01	SOL044
Exchangeable Sodium Percent	%	0.1	SOL044
Exchangeable Potassium	meq/100g	0.01	SOL044
Exchangeable Potassium Percent	%	0.1	SOL044
Exchangeable Calcium	meq/100g	0.01	SOL044
Exchangeable Calcium Percent	%	0.1	SOL044
Exchangeable Magnesium	meq/100g	0.01	SOL044
Exchangeable Magnesium Percent	%	0.1	SOL044
Exchangeable Aluminium	meq/100g	0.01	SOL044
Exchangeable Aluminium Percent	%	0.1	SOL044
Calcium/Magnesium Ratio		0.01	SOL044
Organic Carbon	%	0.3	CAR002/SOL002/1
Phosphorus - Colwell extr	mg/kg	1	SOL005/001/4
Phosphorus Buffer Index		0.1	SOL014
P Sorption Index		1	SOL026
Calcium Chloride treated Category			AS4419-2003 Appendix G
Water treated Category			AS4419-2003 Appendix G

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

PO Box 549, Toowoomba Qld 4350 `t+61 (0)7 4633 0599 f+61 (0)7 4633 0711

www.au.sgs.com

ABN 44 000 964 278 Member of the SGS Group (Société Générale de Surveillance)

e au.food.agriculture.twb@sgs.com

214 McDougall Street Toowoomba QLD 4350

t+61 (0)7 4633 0599 f +61 (0)7 4633 0711

Report of Analysis

Page 6/6

TW12-04936

Field Capacity	%	0.1	
Wilting Point	%	0.1	
Water at Saturation	%	0.1	
Large Particles <20mm >10mm	%	0.1	
Large Particles >20mm	%	0.1	
Nitrogen	mg/kg	300	PRN002
Organic Nitrogen	mg/kg	1	PRN001/SOL030
Total Kjeldahl Nitrogen	mg/kg	1	
Total Soluble Salts	%	0.01	SOL003/SOL001/2
Bulk Density	kg/L		SOL029
Air Dry Moisture	%	0.1	

The analyses presented in the report refer exclusively to the samples analysed.

The presented report can only be reproduced in its entirety.

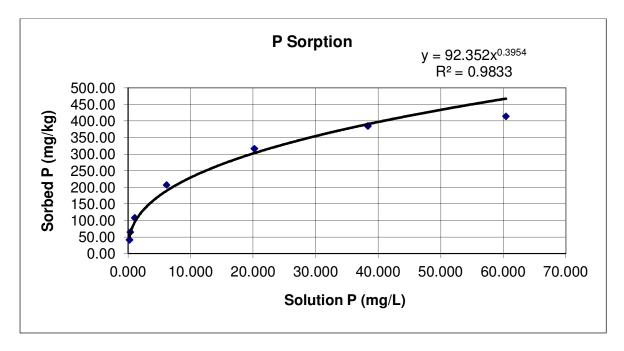
Keegan Roache - PSW Section Manager

For and on behalf of SGS Australia Pty Ltd

This Report is issued by the Company under SGS General Conditions of Services (copy available upon request). The issuance of this Report does not exonerate the contracting parties from exercising all their rights and discharging all their liabilities under their agreed contract. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this Report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

SGS Australia Pty Ltd

214 McDougall Street,

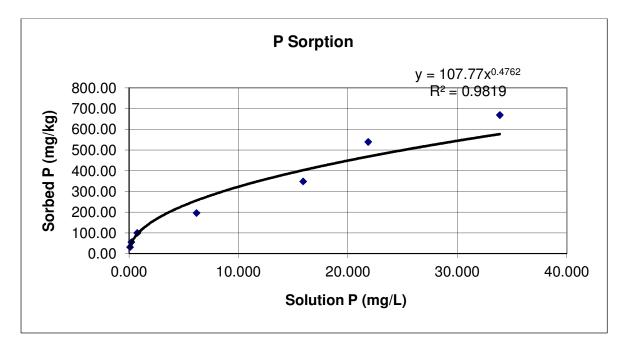

Client: GHD Laboratory No: TW12-04936.001

Marking: GCS01_0.15-0.5

Colwell P mg/kg 18.59 P Sorbed = a x Equilibrium P Co					P Conc. ^b
Initial P mg/kg	Final P mg/kg	Initial P mg/L	Final P mg/L	P Sorbed mg/kg	P Sorbed Estimated
25	2.15035	2.5	0.215	41.44	50.30
50	3.55212	5	0.355	65.04	61.34
100	10.5937	10	1.059	108.00	94.48
250	61.3233	25	6.132	207.27	189.16
500	201.976	50	20.198	316.61	303.04
750	383.437	75	38.344	385.15	390.45
1000	604.129	100	60.413	414.46	467.33

а	92.352
b	0.395
R ²	0.983

Equilibrium P Concentration mg/L							
0.5 1 5 10 20 50							
P Sorbed mg/kg Estimated							
70	92	174	230	302	434		

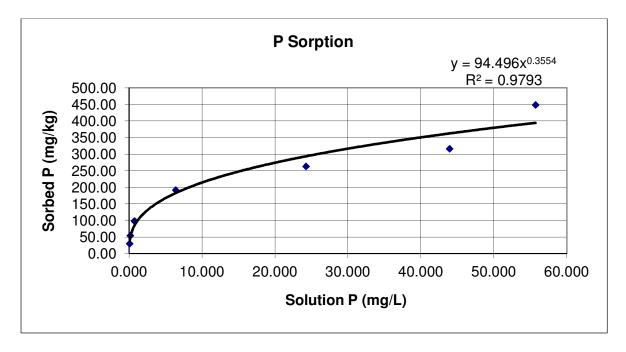

Client: GHD Laboratory No: TW12-04936.003

Marking: GCS02_0.25-3.0

Colwell P mg/kg	7.64		P Sorbed = a	x Equilibrium	P Conc. ^b
Initial P mg/kg	Final P mg/kg	Initial P mg/L	Final P mg/L	P Sorbed mg/kg	P Sorbed Estimated
25	0.823498	2.5	0.082	31.82	32.82
50	2.07796	5	0.208	55.56	51.00
100	7.46967	10	0.747	100.17	93.79
250	61.4931	25	6.149	196.15	255.95
500	159.083	50	15.908	348.56	402.47
750	218.48	75	21.848	539.16	468.11
1000	338.718	100	33.872	668.92	576.81

а	107.771
b	0.476
R ²	0.982

Equilibrium P Concentration mg/L							
0.5 1 5 10 20 50							
P Sorbed mg/kg Estimated							
77	108	232	323	449	694		

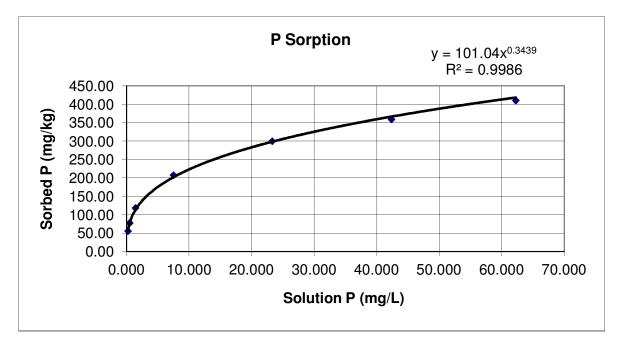

Client: GHD Laboratory No: TW12-04936.005

Marking: GCS03_0.25-3.0

Colwell P mg/kg	5.54		P Sorbed = a x Equilibrium P Conc. ^b				
Initial P mg/kg	Final P mg/kg	Initial P mg/L	Final P mg/L	P Sorbed mg/kg	P Sorbed Estimated		
25	0.677287	2.5	0.068	29.86	36.30		
50	1.49747	5	0.150	54.04	48.12		
100	7.34465	10	0.734	98.20	84.68		
250	63.8345	25	6.383	191.71	182.62		
500	242.561	50	24.256	262.98	293.49		
750	439.324	75	43.932	316.22	362.47		
1000	557.009	100	55.701	448.53	394.38		

а	94.496
b	0.355
R ²	0.979

Equilibrium P Concentration mg/L							
0.5 1 5 10 20 50							
P Sorbed mg/kg Estimated							
74	94	167	214	274	380		

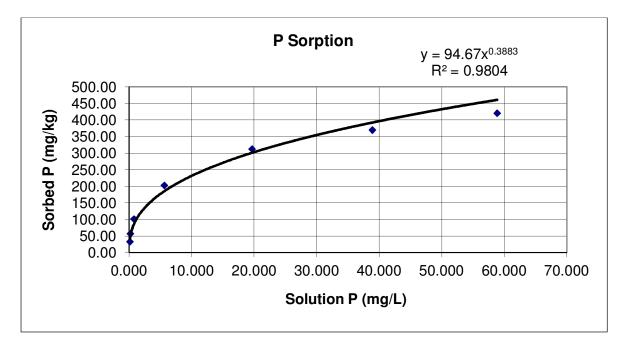

Client: GHD Laboratory No: TW12-04936.006

Marking: GCS04_0-0.3

Colwell P mg/kg	32.58	P Sorbed = a x Equilibrium P Conc. ^b						
Initial P	Final P	Initial P	Final P	P Sorbed	P Sorbed			
mg/kg	mg/kg	mg/L	mg/L	mg/kg	Estimated			
25	1.97194	2.5	0.197	55.61	57.81			
50	4.70545	5	0.471	77.87	77.97			
100	13.9758	10	1.398	118.60	113.37			
250	74.8155	25	7.482	207.76	201.87			
500	232.771	50	23.277	299.81	298.25			
750	423.487	75	42.349	359.09	366.40			
1000	622.178	100	62.218	410.40	418.23			

а	101.043
b	0.344
R ²	0.999

Equilibrium P Concentration mg/L							
0.5 1 5 10 20 50							
	P So	rbed mg/kg Estim	nated				
80	101	176	223	283	388		

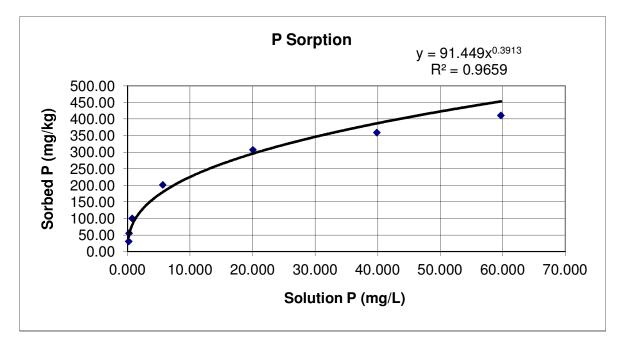

Client: GHD Laboratory No: TW12-04936.007

Marking: GCS05_0.2-0.6

Colwell P mg/kg	9.14		P Sorbed = a x Equilibrium P Conc. ^b						
Initial P mg/kg	Final P mg/kg	Initial P mg/L	Final P mg/L	P Sorbed mg/kg	P Sorbed Estimated				
25	1.22147	2.5	0.122	32.92	41.85				
50	2.12388	5	0.212	57.02	51.87				
100	7.76559	10	0.777	101.37	85.82				
250	56.304	25	5.630	202.84	185.19				
500	196.743	50	19.674	312.40	301.02				
750	389.069	75	38.907	370.07	392.26				
1000	588.543	100	58.854	420.60	460.65				

а	94.670
b	0.388
R ²	0.980

Equilibrium P Concentration mg/L								
0.5 1 5 10 20 50								
	P So	rbed mg/kg Estim	nated					
72	95	177	231	303	432			


Client: GHD Laboratory No: TW12-04936.009

Marking: QAGC_1

Colwell P mg/kg	7.44		P Conc. ^b		
Initial P	Final P	Initial P	Final P	P Sorbed	P Sorbed
mg/kg	mg/kg	mg/L	mg/L	mg/kg	Estimated
25	1.46833	2.5	0.147	30.97	43.17
50	2.00036	5	0.200	55.44	48.72
100	7.1996	10	0.720	100.24	80.42
250	56.0587	25	5.606	201.38	179.53
500	200.209	50	20.021	307.23	295.44
750	398.256	75	39.826	359.18	386.68
1000	596.689	100	59.669	410.75	452.96

а	91.449
b	0.391
R ²	0.966

Equilibrium P Concentration mg/L								
0.5 1 5 10 20 50								
	P So	rbed mg/kg Estim	nated					
70	91 172		225	295	423			

SAMPLE RECEIPT ADVICE

Laboratory Job N° T	W12-04936	Received:	06-Jun-2012
	GHD PTY LTD PO BOX 3106 ADELAIDE TERRACE PERTH WA 6832	OrderNo :	3128991
Fax:	08 64448403		
Email:	wayne.schafer@ghd.com		
The following samples wer PLEASE CHECK SAMPLE If there are any discrepance Estimated reporting date: Tests: Moisture and Ash by Leco Minerals in Solid Sample Trace Metals in Soli (SOL Boron in Soil (SOL001/13) NOx, NH4,NO3 and CL b Bulk Density of Soil Calcium Carbonate % in 3 pH-EC of Soil (SOL003/S) Apparent Exch Cations in Organic Matter in Soil (W Phosphorus/Potassium b Phosphorus Buffer Index	re received for analysis at our Toowoomba labor E MARKINGS - THESE WILL BE SHOWN ON Y cies please respond to this email and modificatio 14-Jun-2012 o TGA (MIN001) _001/9/10/12) 3) by H2O Extract in Soil (SOL030) Soil SOL001/2) n Soil by NH4AC (SOL044) Yalkley-Black) (CAR002/SOL002/1) by Colwell Extraction in Soil (SOL005/001/4) of Soil calculation of P Isotherm of Soils (SOL027)(Add SOL026) Intent alculation from EC (PRN002)	OUR REPORT OF	ANALYSIS.
Comments:			
<u></u>			

Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

We welcome and appreciate your feed back.

SAMPLE RECEIPT ADVICE

•	b N° TW12-04936			
Client :	GHD PTY LTD PO BOX 3106	OrderNo :	3128991	
	ADELAIDE TERRACE			
	PERTH WA 6832			
	Fax: 08 64448403			
	Email: wayne.schafer@ghd.com			
stimated reporting	crepancies please respond to this email and r g date: 14-Jun-2012	nounications will be made	0,7	
Estimated reporting	g date: 14-Jun-2012			
Estimated reporting Fests: Total Kjeldahl Nitr	g date: 14-Jun-2012			
Estimated reporting Tests: Total Kjeldahl Nitr Samples:	g date: 14-Jun-2012	Sam		
Estimated reporting Tests: Total Kjeldahl Nitr Samples: _ab ld:	g date: 14-Jun-2012 rogen in Soil		pled Product	
Estimated reporting Fests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.001	g date: 14-Jun-2012 rogen in Soil ClientID	Sam	pled Product	
Estimated reporting Fests: Total Kjeldahl Nitr Samples:	g date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL	Sam 29/05	pled Product 5/12	
Estimated reporting Fests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.001 TW12-04936.002	o date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL GCS01_0.5-1.2 HOLD SOIL	Sam 29/05 29/05	pled Product 5/12 5/12	
Estimated reporting Tests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.001 TW12-04936.002 TW12-04936.003	o date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL GCS01_0.5-1.2 HOLD SOIL GCS02_0.25-3.0 SOIL	Sam 29/05 29/05 29/05	pled Product 5/12 5/12 5/12	
Estimated reporting Tests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.001 TW12-04936.002 TW12-04936.003 TW12-04936.004	g date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL GCS01_0.5-1.2 HOLD SOIL GCS02_0.25-3.0 SOIL GCS03_0-0.25 HOLD SOIL	Sam 29/05 29/05 29/05 29/05	pled Product 5/12 5/12 5/12 5/12 5/12	
Estimated reporting Tests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.002 TW12-04936.003 TW12-04936.004 TW12-04936.005	a date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL GCS01_0.5-1.2 HOLD SOIL GCS02_0.25-3.0 SOIL GCS03_0-0.25 HOLD SOIL GCS03_0.25-3.0 SOIL	Sam 29/05 29/05 29/05 29/05 29/05 29/05	pled Product 5/12 5/12 5/12 5/12 5/12 5/12	
Estimated reporting Tests: Total Kjeldahl Nitr Samples: Lab Id: TW12-04936.001 TW12-04936.002 TW12-04936.003 TW12-04936.004 TW12-04936.005 TW12-04936.006	g date: 14-Jun-2012 rogen in Soil ClientID GCS01_0.15-0.5 SOIL GCS01_0.5-1.2 HOLD SOIL GCS02_0.25-3.0 SOIL GCS03_0-0.25 HOLD SOIL GCS03_0.25-3.0 SOIL GCS04_0-0.3 SOIL	Sam 29/05 29/05 29/05 29/05 29/05 30/05	pled Product 5/12 5/12 5/12 5/12 5/12 5/12 5/12	

Comments:

Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

We welcome and appreciate your feed back.

SGS Food & Agriculture Laboratory 214 McDougall Street Toowoomba QLD 4350 Tel. (61-7) 4633 0599 Fax (61-7) 4633 0711 SGS Australia Pty. Ltd. trading as SGS Australasia Member of the SGS Group.

D. Laboratory Results Summary Tables

Golf Course and Oval Assessment Acid Sulfate Soil

			Field ID	GCS04-0.7_2.2	RASS1-0.3-0.6	RASS1-0.9-1.2	RASS2-0.2-0.5	RASS2-1.2-1.5	RASS3-0.2-0.7	RASS3-1.0_1.5	RASS4-0.4_0.6	RASS4-1.0_1.2
			LocCode	GCS04 RASS	RASS1 RASS1	RASS1	RASS2	S2 RASS2	RASS3	RASS3	RASS4	RASS4
			Sampled_Date-Time	30/05/2012	31/05/2012	31/05/2012	31/05/2012	31/05/2012	31/05/2012	31/05/2012	31/05/2012	31/05/2012
Method Name	ChemName	Units	EQL									
EA029-A: pH Measurements	pHKCL	pH Unit	0.1	9.8	9.8	9.8	9.8	9.9	9.9	9.9	9.8	9.9
	pHOX	pH Unit	0.1	8.2	8	8.3	8.3	8.3	8.3	8.3	8.2	8.2
EA029-B: Acidity Trail	s-TAA	% pyrite S	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	s-TPA	% pyrite S	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
	s-TSA	% pyrite S	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
	TAA	mole H+/t	2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	TPA	mole H+/t	2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	TSA	mole H+/t	2	<2	<2	<2	<2	<2	<2	<2	<2	<2
EA029-C: Sulfur Trail	a-SPOS	mole H+/t	5	63	87	115	57	121	74	123	86	111
	SKCI	% S	0.005	0.01	0.04	0.03	0.03	0.06	0.05	0.1	0.05	0.14
	SP	% S	0.005	0.11	0.18	0.22	0.12	0.26	0.17	0.29	0.19	0.32
	SPOS	% S	0.005	0.1	0.14	0.18	0.09	0.19	0.12	0.2	0.14	0.18
EA029-D: Calcium Values	a-CaA	mole H+/t	5	18,000	13,700	16,200	14,900	16,600	15,200	17,600	14,400	16,300
	CaA	% Ca	0.005	36	27.5	32.5	29.9	33.2	30.5	35.4	29	32.6
	CaKCL	% Ca	0.005	0.21	0.24	0.21	0.22	0.24	0.22	0.24	0.21	0.27
	CaP	% Ca	0.005	36.2	27.7	32.7	30.1	33.5	30.7	35.6	29.2	32.9
	sCaA	% S	0.005	28.8	22	26	23.9	26.6	24.4	28.3	23.2	26.1
EA029-E: Magnesium Values	a-MgA	mole H+/t	5	741	932	1100	651	1210	690	989	881	818
	MgA	% Mg	0.005	0.9	1.13	1.34	0.79	1.47	0.84	1.2	1.07	0.99
	MgKCL	% Mg	0.005	0.04	0.06	0.06	0.06	0.1	0.08	0.1	0.06	0.14
	MgP	% Mg	0.005	0.94	1.2	1.4	0.85	1.57	0.92	1.31	1.13	1.13
	s-MgA	% S	0.005	1.19	1.49	1.76	1.04	1.93	1.11	1.58	1.41	1.31
EA029-F: Excess Acid Neutralising Capacity	a-ANCE	mole H+/t	10	15,900	15,300	15,700	14,800	16,400	15,800	16,300	16,300	15,700
	ANCE	% CaCO3	0.02	79.4	76.6	78.7	74.1	81.8	79.2	81.8	81.4	78.4
	s-ANCE	% S	0.02	25.4	24.5	25.2	23.7	26.2	25.4	26.2	26.1	25.1
EA029-H: Acid Base Accounting	a-NetAcidity	mole H+/t	10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	LR	kg CaCO3/t	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	s-NetAcidity	% S	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Liming Rate excluding ANC	kg CaCO3/t	1	5	6	9	4	9	6	9	6	8
	Net Acidity excluding ANC (sulfur units)	% S	0.02	0.1	0.14	0.18	0.09	0.19	0.12	0.2	0.14	0.18

GHD

ANCE

					Sample Date SDG	28/06/2012 EP1205271	28/06/2012 EP1205271		28/06/2012 EP1205271	28/06/2012 EP1205271	28/06/2012 EP120527
nem Group	Chem Name	Units	EQL	ANZECC 2000 Long- term Irrigation	ANZECC 2000 Short- term Irrigation						
rganics	Anions Total BOD	meg/L	0.01			33.4	290	339	81.4	31.2	342 7
	Cations Total Chloride	mg/L meq/L mg/L	2 0.01 1			<2 32.9 789	<2 270 9320	<2 302 10,800	<2 79.3 2320	<2 29.6 732	316 10,900
	COD Ionic Balance	mg/L %	5 0.01			49 0.67	198 3.71	371 5.74	70	36 2.58	422 3.98
Nutrients Alkalinity Vletals	Ammonia as N Nitrate (as N) Nitrite (as N)	µg/L mg/L mg/L	10 0.01 0.01	90 30	90 30	3480 0.01 <0.01	870 <0.01 <0.01	380 <0.01 <0.01	170 2.78 0.05	2810 0.47 0.05	390 <0.01 <0.01
	Nitrogen (Total Oxidised) Sulphate	mg/L mg/L	0.01	1000	1000	0.01	<0.01 <0.01 862	<0.01 <0.01 1380	2.83 294	0.52	<0.01 1370
	Alkalinity (Bicarbonate as CaCO3) Alkalinity (Carbonate as CaCO3)	mg/L mg/L	1			384 <1	472 <1	300 <1	494 <1	371 <1	312 <1
	Alkalinity (Hydroxide) as CaCO3 Alkalinity (total) as CaCO3 Aluminium (Filtered)	mg/L mg/L mg/L	1 1 0.01	5	20	<1 384 0.02	<1 472 0.01	<1 300 <0.01	<1 494 <0.01	<1 371 <0.01	<1 312 <0.01
	Arsenic (Filtered) Cadmium (Filtered)	mg/L mg/L	0.001	0.1	2 0.05	0.007	0.004	<0.001 <0.0001	<0.001 <0.0001	<0.001 <0.0001	<0.001
	Calcium (Filtered) Chromium (III+VI) (Filtered)	mg/L mg/L	1	1000 0.1	1000	116 <0.001	481	344 <0.001	117 <0.001	108	370 <0.001
	Copper (Filtered) Lead (Filtered) Magnesium (Filtered)	mg/L mg/L mg/L	0.001 0.001	0.2	5 5	0.004 <0.001 70	0.007 <0.001 555	0.011 <0.001 679	0.007 <0.001 215	0.002 <0.001 52	0.01 <0.001 714
	Nickel (Filtered) Phosphorus	mg/L mg/L	0.001	0.2	2 0.8-12	0.013 0.49	0.034 0.23	0.014 0.6	0.006	0.007	0.014
	Potassium (Filtered) Sodium (Filtered)	mg/L mg/L	1			49 463	195 4480	233 5140	54 1250	36 438	242 5350
PH (C ₆ -C ₃₆)	Zinc (Filtered) C6 - C 9 Fraction C10 - C14 Fraction	mg/L µg/L µg/L	0.005 20 50	2	5	0.016 <20 <50	0.022 <20 <50	9.4 <20 <50	0.021 <20 <50	0.01 <20 <50	9.3 <20 <50
	C15 - C28 Fraction C29 - C36 Fraction	μg/L μg/L	100 50			<100 <50	<100 <50	<100 <50	<100 <50	<100 <50	<100 <50
PH (C ₆ -C ₄₀)	C10 - C36 (Sum of Total) - Calc C6 - C10 Fraction	µg/L µg/L	50 20			<50 <20	<50 <20	<50 <20	<50 <20	<50 <20	<50 <20
	C6-C10 less BTEX (F1) C10 - C16 Fraction C16 - C34 Fraction	mg/L µg/L	0.02 100 100			<0.02 <100 <100	<0.02 <100 <100	<0.02 <100 <100	<0.02 <100 <100	<0.02 <100 <100	<0.02 <100 <100
	C34 - C40 Fraction C10 - C40 (Sum of Total) - Calc	µg/L µg/L µg/L	100 100			<100 <100 <100	<100 <100 <100	<100 <100 <100	<100 <100 <100	<100 <100 <100	<100 <100 <100
ΈX	Benzene Toluene	μg/L μg/L	1 2			<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2
	Ethylbenzene Xylene (m & p)	µg/L µg/Lf	2			<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2
	Xylene (o) Xylene Total Xylenes (Sum of Total) - Calc	μg/L μg/L μg/L	2			<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2	<2 <2 <2
М	BTEX (Sum of Total) - Calc Acenaphthene	μg/L μg/L	1			<7 <1	<7 <1	<7 <1	<7 <1	<7 <1	<7 <1
	Acenaphthylene Anthracene	μg/L μg/L	1 1			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	Benz(a)anthracene Benzo(a) pyrene Benzo(a)pyrene TEQ (WHO)	µg/L µg/L mg/L	1 0.5 0.0005			<1 <0.5 <0.0005	<1 <0.5 <0.0005	<1 <0.5 <0.0005	<1 <0.5 <0.0005	<1 <0.5 <0.0005	<1 <0.5 <0.0005
	Benzo(b)fluoranthene Benzo(g,h,i)perylene	µg/L µg/L	1 1			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	Benzo(k)fluoranthene Chrysene	μg/L μg/L	1 1			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	Dibenz(a,h)anthracene Fluoranthene Fluorene	µg/L µg/L	1 1 1			<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1
	Indeno(1,2,3-c,d)pyrene Naphthalene	μg/L μg/L μg/L	1 1			<1	<1 <1	<1 <1	<1	<1 <1	<1 <1
	PAHs (Sum of Total) - Calc Phenanthrene	ug/l µg/L	0.5 1			<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1	<0.5 <1
henols	Pyrene 2,4,5-trichlorophenol	µg/L µg/L	1			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
	2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol	μg/L μg/L μg/L	1 1 1			<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1
	2,6-dichlorophenol 2-chlorophenol	µg/L µg/L	1			<1	<1 <1	<1 <1	<1	<1 <1	<1 <1
	2-methylphenol 2-nitrophenol	μg/L μg/L	1 1			<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
	3-&4-methylphenol 4-chloro-3-methylphenol Pentachlorophenol	µg/L µg/L	2 1 2			<2 <1 <2	<2 <1 <2	<2 <1 <2	<2 <1 <2	<2 <1 <2	<2 <1 <2
	Phenol Phenols (Sum of Total) - Calc	µg/L µg/L ug/l	1			<1 <12	<1 <12	<1 <12	<1 <12	<1 <12	<1 <12
OCs	1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	μg/L μg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane	mg/L mg/L	0.005			<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
	1,1-dichloroethene 1,1-dichloropropene	μg/L μg/L μg/L	5 5 5			<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5
	1,2,3-trichlorobenzene 1,2,3-trichloropropane	μg/L μg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	1,2,4-trichlorobenzene 1,2,4-trimethylbenzene	µg/L µg/L	5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	1,2-dibromo-3-chloropropane 1,2-dibromoethane 1,2-dichlorobenzene	μg/L μg/L μg/L	5 5 5			<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5
	1,2-dichloroethane 1,2-dichloropropane	μg/L μg/L	5			<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	1,3,5-trimethylbenzene 1,3-dichlorobenzene	μg/L μg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	1,3-dichloropropane 1,4-dichlorobenzene	µg/L µg/L	5 5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5 <5
	2,2-dichloropropane 2-chlorotoluene 2-hexanone (MBK)	μg/L μg/L μg/L	5 50			<5 <5 <50	<5 <5 <50	<5 <5 <50	<5 <5 <50	<5 <5 <50	<5 <5 <50
	4-chlorotoluene 4-methyl-2-pentanone (MIBK)	μg/L μg/L	5 50			<5 <50	<5 <50	<5 <50	<5 <50	<5 <50	<5 <50
	Bromobenzene Bromodichloromethane	µg/L µg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Bromoform Bromomethane Carbon disulfide	µg/L µg/L ma/L	5 50 0.005			<5 <50 <0.005	<5 <50 <0.005	<5 <50 <0.005	<5 <50 <0.005	<5 <50 <0.005	<5 <50 <0.005
	Carbon disulfide Carbon tetrachloride Chlorobenzene	mg/L µg/L µg/L	0.005 5 5			<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5
	Chlorodibromomethane Chloroethane	µg/L µg/L	5 50			<5 <50	<5 <50	<5 <50	<5 <50	<5 <50	<5 <50
	Chloroform Chloromethane cis-1 2-dichloroethene	µg/L µg/L	5 50 5			<5 <50 <5	<5 <50 <5	<5 <50 <5	<5 <50 <5	<5 <50 <5	<5 <50 <5
	cis-1,2-dichloroethene cis-1,3-dichloropropene cis-1,4-dichloro-2-butene	µg/L µg/L mg/L	5 5 0.005			<5 <5 <0.005	<5 <5 <0.005	<5 <5 <0.005	<5 <5 <0.005	<5 <5 <0.005	<5 <5 <0.005
	Dibromomethane Dichlorodifluoromethane	µg/L µg/L	5 50			<5 <50	<5 <50	<5 <50	<5 <50	<5 <50	<5 <50
	Hexachlorobutadiene Iodomethane Isopropulaenzene	µg/L µg/L	5 5 5			<5 <5	<5 <5 <5	<5 <5 <5	<5 <5	<5 <5 <5	<5 <5 <5
	Isopropylbenzene MEK (2-butanone) n-butylbenzene	µg/L mg/L µg/L	5 0.05 5			<5 <0.05 <5	<5 <0.05 <5	<5 <0.05 <5	<5 <0.05 <5	<5 <0.05 <5	<5 <0.05 <5
	n-propylbenzene p-isopropyltoluene	µg/L µg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	sec-butylbenzene Styrene tort butylbenzene	mg/L µg/L	0.005			<0.005 <5	<0.005 <5	<0.005 <5	<0.005 <5	<0.005 <5	<0.005 <5
	tert-butylbenzene Tetrachloroethene trans-1,2-dichloroethene	mg/L µg/L µg/L	0.005 5 5			<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5	<0.005 <5 <5
	trans-1,3-dichloropropene trans-1,4-Dichloro-2-butene	µg/L µg/L	5 5			<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Trichloroethene (Trichloroethylene -TCE) Trichlorofluoromethane	mg/L mg/L	0.005			<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05	<0.005 <0.05
/0Cs	Vinyl acetate Vinyl chloride Pentachloroethane	µg/L µg/L mg/L	50 50 0.005			<50 <50 <0.005	<50 <50 <0.005	<50 <50 <0.005	<50 <50 <0.005	<50 <50 <0.005	<50 <50 <0.005
SVOCs DC Pesticides	4,4-DDE a-BHC	µg/L µg/L	0.5 0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	Aldrin Aldrin + Dieldrin	μg/L μg/L	0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	Aldrin + Dieldrin - Calc b-BHC chlordane	µg/L µg/L µg/l	0.5			<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5
	chlordane Chlordane (cis) Chlordane (trans)	µg/L µg/L µg/L	0.5 0.5 0.5			<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5
	d-BHC DDD	µg/L µg/L	0.5 0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	DDT DDT + DDD + DDE - Calc	µg/L µg/L	2			<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3
	Dieldrin Endosulfan I Endosulfan II	ug/L ug/L	0.5			<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5
	Endosulfan II Endosulfan sulphate Endrin	µg/L µg/L µg/L	0.5 0.5 0.5			<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5
	Endrin aldehyde Endrin ketone	ug/L ug/L ug/L	0.5 0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	g-BHC (Lindane) Heptachlor	µg/L µg/L	0.5 0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	Heptachlor epoxide Hexachlorobenzene Methoxychlor	µg/L µg/L µg/L	0.5 0.5 2			<0.5 <0.5 <2	<0.5 <0.5 <2	<0.5 <0.5 <2	<0.5 <0.5 <2	<0.5 <0.5 <2	<0.5 <0.5 <2

GHD

180 Lonsdale Street Melbourne, Victoria 3000 T: (03) 8687 8000 F: (03) 8687 8111 E: melmail@ghd.com.au

© GHD 2012

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. G:\31\28991\WP\213139.docx

Document Status

Rev	Author	Reviewer		Approved for Issue			
No.		Name	Signature	Name	Signature	Date	
0	A Sutherland	A Quinn	A. P. Pori	A Quinn	A. P. Pri	12/9/12	

www.ghd.com

