

2. REVIEW OF EXISTING INFORMATION

2.1 Site condition

The site has been a working shipyard since the 1960's. The infrastructure includes dry berths, administration buildings and bitumen car parks (AEC Environmental 2011b). The area surrounding the project site is for industrial use. There has been no previous dredging at the project site. The soil and sediment at the project site has been contaminated by waste from the removal and reapplication of antifouling treatments. Further details on the types of potential contaminants are outlined in Section 2.5.

2.2 Geotechnical

The geology underlying the site is surficial sediments overlying limestone and calcrete of the Quaternary Age (AEC Environmental 2011b). A benthic mapping survey in 2004 also confirmed the presence of limestone bedrock (DALSE 2004).

2.3 Previous relevant studies

Sediment, soil and groundwater monitoring was undertaken quarterly between 2005 and 2010 under the Department of Conservation (DEC) licence conditions (Environmental Protection Act 1986 Licence No 5897/9) (AEC Environmental 2011b). The results for marine sediments were assessed against the Revised Environmental Quality Criteria (EQC) for Cockburn Sound (EPA 2005).

Sediment within and around the dredge footprint was monitored quarterly for metals, TBT and diuron (contaminants associated with hull blasting) at 14 locations during 2005 to 2010 (Error! Reference source not found.) (AEC Environmental 2011a). All metals and contaminants were below the Cockburn sounds EQC guideline levels (EPA 2005) except:

- Copper at site T06 was consistently above the guideline;
- Nickel and zinc exceeded the guideline at site T07 in the April 2007 monitoring event;
- · TBT in the majority of locations; and
- In March 2005 T09 had exceedences for all metals except for lead. This is thought to be an isolated contamination caused by a heavy ship being unloaded at the port.

Zinc, copper and TBT were also present in groundwater and soil results between 2005 and 2010 (AEC Environmental 2011a).

BAE SYSTEMS

BAE SYSTEMS HENDERSON POINT SHIPYARD DREDGING SEDIMENT SAMPLING AND ANALYSIS PLAN

An additional sediment study was carried out in 2010 as part of a baseline site investigation (AEC Environmental 2011a). Five sediment sample sites were analysed for metals and metalloids, pH and TBT. These sample sites were parallel to the shoreline at a distance of approximately 1 metre, similar to sites T05, T06 and T07 & T11 (Error! Reference source not found.). The results were compared to the ANZECC low and high Interim Sediment Quality Guidelines (ISQG's) (ANZECC/ARMCANZ 2000). ISQG-low is a threshold level at which adverse environmental impacts are unlikely to occur. ISQG-high levels are threshold levels at which adverse environmental impacts are more likely to occur. Across the sites, copper exceeded the ISQG-low and TBT exceeded the ISQG-high.

Figure 2: Sediment monitoring locations 2005 to 2010 (reproduced from (URS 2009))

resources & energy

BAE SYSTEMS
HENDERSON POINT SHIPYARD DREDGING
SEDIMENT SAMPLING AND ANALYSIS PLAN

2.4 Dredge areas, volumes and likely contaminants

The dredge volume for safe access to the wharf is approximately 20,000m³ over an area of 14,500 m².

As the proposed dredging is capital in nature, the number of sample locations is based on the layer of recent sediments which *could* be contaminated. Based on up to 1 m of soft surface sediments being potentially contaminated, the relevant volume for sample number determination is 14,500m³. As the site is potentially contaminated and the dredge volume is low the entire dredge volume of 20,000 m³ has been used to conservatively estimated the number of samples required (Section 3.2).

2.5 Contaminants list

Appendix A (page 27) of the NAGD requires that a potential contaminants list be developed and should include:

- toxic substances known, from previous investigations, to occur in dredge area sediments at levels greater than one tenth of the screening levels; or
- based on historical review, substances potentially present at such levels in the sediments to be dredged.

Previous investigations at the project site indicate that TBT, copper, nickel and zinc are the main contaminants of potential concern (AEC Environmental 2011b, a). While all other contaminants were below screening levels, a number of metals were recorded above their respective detection limits and have been included in the potential contaminants list. Particle size distribution has also been included to provide physical characterisation of surface sediments within the dredge footprint.

For clarity, the following parameters comprise the list of physical and chemical analytes for sediment characterisation.

Based on contaminants of concern found during previous investigations and NAGD guidelines (Commonwealth of Australia 2009, AEC Environmental 2011b, a) the contaminants list proposed for analysis is:

- · metals and metalloids:
 - arsenic (As)
 - chromium (Cr)
 - copper (Cu)
 - lead (Pb)
 - nickel (Ni)

- zinc (Zn)
- organics:
 - organotins (TBT);
- · total organic carbon; and
- particle size distribution (to 2 μm).

3. SAMPLING AND ANALYSIS

3.1 Sampling rationale

The sampling and analysis of sediments proposed below complies with the requirements for small sized capital dredging projects (less than 50,000 m³) in Appendix D of the NAGD.

The number of samples and sample locations has been derived from the NAGD as shown in Table 6 (Appendix D of the NAGD).

3.2 Sampling locations

The number of sample locations is based on the volume of the layer of recent sediments which *could* be contaminated, but does not include the volume of underlying consolidated materials. Based on available current data (from the last past five years), the dredge site is initially classified as *probably contaminated*. As the site is potentially contaminated and the dredge volume is low the entire dredge volume of 20,000 m³ has been used to conservatively estimated the number of samples required. This will require sampling at a total of eight sampling locations.

Sample locations will be selected at random across the proposed dredge footprint. Locations will be recorded using either an onboard GPS or hand-held GPS that is reliable and accurate to at least +/- 10 m.

3.3 Proposed sediment quality attributes for analysis

3.3.1 Sediment characterisation

For sediment characterisation, the suite of contaminants to be tested includes those identified in the contaminants list as well as the physical characteristics. Table 1 provides the appropriate list of physical and chemical parameters and their associated practical quantitation limits (PQL) for sediment characterisation.

Table 1: Contaminant list and their PQL's

Metals and metalloids:	PQL (mg\Kg)
arsenic (As)	1
chromium (Cr)	1
copper (Cu)	1
lead (Pb)	1

nickel (Ni)	1
zinc (Zn)	1
Organics:	A STATE OF THE
organotins (TBT)	0.5 μgSn/kg
total organic carbon	0.02%
moisture content	1%
Physical characteristics	
particle size distribution	NA

NA = no stipulated PQL so use lowest limit of reporting available from the chosen laboratory.

3.3.2 Elutriate and bioavailability analyses

Based on previous sampling, exceedence of screening levels at the 95per cent UCL of the may occur for TBT. To minimise the need to recollect material for Phase 3 elutriate and bioavailability testing (if required), enough sample will be collected at each sampling location, and stored in the event that further testing is required.

If elutriate and bioavailability (i.e. dilute acid extraction for metals) testing are required, samples from the locations exceeding the appropriate NAGD screening level will be analysed. According to Table 7 in Appendix D of the NAGD, samples from a minimum of three locations are required for Phase 3 testing (for the given volume of dredging).

3.4 Sampling procedures

Grab samples will be retrieved using a Van Veen grab sampler from a 6.4m commercial vessel. The sampling will be led by a suitably qualified environmental scientist with experience in the application of the NAGD and sediment quality assessments. The vessel will be anchored at each sampling location to allow for repeated grabs to be taken, if required. Each sampling location will be recorded on a handheld GPS.

Any potential contaminants, e.g lead diving weights, antifoulants, fuels and oils and sunscreen) will be removed from the sampling area prior to mobilisation to minimise the potential for cross contamination of samples. The sample processing area will be cleaned with a decontamination solution (Decon 90) and rinsed with seawater prior to sampling.

3.4.1 Sample processing

Sediment samples will be logged and processed onboard the sampling vessel. At each sample location a site description sheet will be completed to document sample collection and sediment descriptions (Appendix 1). The following information will be collected:

- · Name of client;
- Sampling date;
- · General location number and sample identifiers assigned;
- · Name of the sample collector;
- Type of sampler used;
- · Weather conditions at the time of sampling;
- · Sea state at the time of sampling;
- · General comments (eg level of shipping traffic etc);
- GPS location;
- · Time of sampling;
- Water depth at each sampling location; and
- · Photograph of each sediment sample.

A sediment log of each core will be recorded on a field data sheet, providing a description of the composition of each sample which includes the following information (Appendix 2):

- Colour;
- Field texture;
- · Observed sand grain size;
- Plasticity;
- · Moisture content of sample;
- Consistency;
- % stones;
- · Presence of shell/shell grit; and
- · Odour (eg marine, sulphurous).

Sample handling on-board the vessel will include sediment description logging, sample homogenisation, and preparation for dispatch to analytical laboratories (ALS and Advanced Analytical Laboratories) under Chain-of-Custody (CoC) documentation. Samples will be homogenised in pyrex mixing bowls using powderless latex gloves. A table of containers used for samples is provided in Table 2. Sample containers were labelled using indelible ink to record the sample location number and date, stored in eskies with ice packs for until dispatched to the testing laboratories (Advanced Analytical Australia) for analysis.

Table 2: Sample containers

Analyte	Containers
Metals	1 x 500 ml solvent washed, glass jar with a Teflon lined lid
ТВТ	1 x 500 ml solvent washed, glass jar with a Teflon lined lid
Particle size	1 x 250 ml ziplock plastic bag to hold a minimum of 500 g sample

3.5 Contingency plan

Sampling is proposed to be undertaken in April 2012 over one day.

The potential for disruption to sediment collection will be minimal as weather forecasts and shipping schedules will be reviewed before mobilisation to the field.

The potential for gear failure will be minimised through properly maintained equipment. If an equipment failure occurs, some parts may be repaired with spares taken to the site. If serious equipment failure occurs, then demobilisation and rescheduling following equipment repair would be required.

3.6 Laboratory analysis

Table 3 summarises the laboratory methods for the suite of analytes to be tested. All laboratories used for analyses will be National Association of Testing Authorities (NATA) accredited for the methods used and experienced in the analysis of marine sediments.

Table 3 Analytical method information for sediments

Activity/test	Method reference	Method summary	PQL
Moisture content	Gravimetric	Oven-dry overnight, measure weight	1%
Particle size	Sieve and	Sieve and hydrometer	To 2um

Activity/test	Method reference	Method summary	PQL
distribution	hydrometer		
Total organic carbon	Handbook of soil & water	Dilute acid treatment, high temperature dry combustion, infrared detection.	0.02%
Organotins	In-house	GC/MS	0.5 ug Sn/kg
Trace metals	USEPA 3050 / 200.7 ICP/AES	Nitric/hydrochloric acid digestion, ICP/AES	1 mg/kg

3.7 Sampling and Analysis Quality Control

Quality Control - Field Sampling

Quality control during sampling will be ensured by:

- using suitably qualified environmental staff experienced in sediment sampling, field supervision and sediment logging;
- using a survey vessel which is thoroughly inspected and washed down;
- containing samples in appropriately cleaned, pre-treated and labelled sample containers;
- keeping samples cool (4°c) after sampling and during transport where they would be stored in eskies with pre-frozen ice bricks;
- transportation of samples under chain of custody documentation;
- generating additional QC samples in accordance with the NAGD (refer Section 3.7.2 below);
- 'blind labelling' all field QC split triplicate samples in the field with QC field numbers that do not relate to sampling location names; and
- decontaminating all sampling equipment, including mixing bowls etc., between sampling locations via a decontamination procedure involving a wash with ambient sea water and a laboratory grade detergent, and successive rinsing with deionised water.

3.7.2 Quality control – analysis

Appendix F of NAGD specifies that field quality control samples should include (per batch of 20 or fewer):

- In cases where volatile substances such as some chlorinated organics are being determined, one container (trip) blank filled with inert material, for example chromatographic sand;
- On 10 per cent of locations, a field triplicate (that is three separate samples taken at the same location) is collected at both depth intervals (if possible) to determine the spatial variability of the sediment physical and chemical characteristics. T;
- On five per cent of locations, samples should be thoroughly mixed then split into three
 containers to assess laboratory variation, with one of the three samples sent to a
 second (reference) laboratory for analyses. This process will be repeated for the
 second depth interval (0.5-1.0m) if possible; and
- One sample that has been analysed in a previous batch (if more than one batch is sent) to determine the analytical variation between batches.

In consideration of this, the following QA/QC protocol has been developed:

- no trip blanks will be taken and analysed as volatile organic carbon compounds, (e.g. chlorinated hydrocarbons and BTEX), are not being assessed.
- the field samples proposed to be taken for QC analysis will comply with the 10 percent and 5 percent criteria for separate (field) triplicate and split triplicate samples respectively; and
- all samples will be sent to the laboratories as a single batch.

The analytical laboratory will need to comply with the laboratory and QA procedures specified in Appendix F of the NAGD which require:

The laboratory quality assurance program should include the following quality control samples to be analysed in each batch (10-20 samples). This is in addition to its own internal procedures to ensure analytical procedures are conducted properly and produce reliable results:

- One laboratory blank sample;
- For metals, one Standard Reference Material (SRM), that is, a sample of certified composition such as MESS-1 or BCSS-1, or BEST-1 (for mercury), or a suitable internal laboratory standard calibrated against an SRM. The laboratory standard should be a ground sediment sample, not a liquid sample, to test both the recovery of the extraction procedure and the analysis;

- For organics, one sample spiked with the parameters being determined (or a surrogate spike for certain organics) at a concentration within the linear range of the method being employed – this will determine whether the recovery rate of the analytical method is adequate or not (that is, that all the chemicals present in the sample are actually being found in the analysis); and
- One replicate sample to determine the precision of the analysis; the standard deviation and coefficient of variation should be documented.

A validation of the analytical data obtained will be undertaken in accordance with Appendix F of the NAGD. This validation will include a consideration of results for blanks, standards and spikes, and replicate and duplicate samples. Relative percentage differences and relative standard deviations between QC duplicate and triplicate samples will be compared against relevant criteria.

3.8 Analysis of results

3.8.1 Sediment Analysis for Total Sediment Concentrations

Contaminant levels for sediments will be compared against the following guidelines:

- the NAGD Screening Level concentrations listed in Appendix A, Table 2 of the NAGD (Commonwealth of Australia 2009) to assess marine sediment quality;
- Ecological Investigation Level (EIL) and Health Investigation Level for residential use
 (HIL_A) in the 'Assessment Levels for Soil, Sediment and Water' (Draft DEC 2010 OR
 1999 ref) to assess the suitability of dredged material placed onshore. The use of the
 HIL-A is to provide a conservative approach to the assessment of sediments for
 onshore disposal. The project site is in an area designated for industrial use under HIL-F, which is a far less conservative HIL than HIL-A;
- ANZECC/ARMCANZ guidelines (REF) to identify potential toxic impacts from onshore
 disposal of sediments and discharges to the marine environment or groundwater. The
 ANZECC guidelines include the ISQG-low and ISQG-high assessment levels. The
 ISQG-low level is a threshold below which the frequency of adverse effects is expected
 to be very low. The ISQG-high level is a threshold above which adverse biological
 effects are expected to occur more frequently.

The comparison against guideline levels involves the comparison of mean contaminant concentrations at the 95 percent upper confidence level (UCL) of the mean. For the purposes of calculation of 95 percent UCLs, values below detection limits will be set to half of the LOR in accordance with NAGD recommendations.

The methods used to calculate the 95 percent UCLs are based on those required in Appendix A of the NAGD. Normality of datasets are determined using Shapiro-Wilks test and quantile-

quantile plots in ProUCL Version 4.1 (4.1.01). Datasets are determined as being normal, lognormal or neither in their distributions. Normal datasets are analysed using the 1-tailed Student's 't' UCL. Log-normal datasets are analysed using non-parametric jacknife analysis as recommended in the NAGD. Similarly, datasets that are neither normal nor log-normally distributed are analysed using non-parametric jacknife analysis.

If any results are above the NAGD screening levels, EIL or HIL-A a further phase of testing will be initiated. As it is proposed sediment will be disposed of onshore, Australian Standard Leaching Procedure (ASLP) testing, as set out in the 'Landfill Waste Classification and Waste Definitions (DEC 2006/ 2009) will be undertaken on all results above the NAGD screening level, the most conservative of the guidelines. This test is designed to measure analyte levels that could potentially leach into the groundwater.

3.9 Reporting

A report containing the following information will be prepared at the conclusion of the sampling and analysis program:

- · introduction and description of the study area;
- details of the sampling methodology including any deviations from the approved SAP;
- · a figure showing the sampling locations;
- descriptions of any observations or anomalies during sampling and/or analysis;
- laboratories used and the analytical methods employed;
- QA procedures and results;
- · summary table of results for each parameter analysed;
- comparison and interpretation of the results;
- discussion; and
- appendices containing all laboratory reports and QA/QC analyses.

4. REFERENCES

- AEC Environmental (2011a) Baseline Site Investigation BAE Henderson Site Freehold Area.
- AEC Environmental (2011b) Preliminary Site Investigation of Henderson Shipyard for BAE Systems.
- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- Commonwealth of Australia (2009) National Assessment Guidelines for Dredging. In: Department of the Environment W, Heritage and the Arts (ed), Canberra
- DALSE (2004) Benthic Habitat Mapping of the Eastern Shelf of the Cockburn Sound 2004. Prepared for Cockburn Sound Management Council
- EPA (2005) Environmental Quality Criteria Reference Document for Cockburn Sound.
- URS (2009) BAE Systems Henderson Shipyard Historical Trend Analysis. Prepared for BAE Systems

Worley Parsons

resources & energy

BAE SYSTEMS
HENDERSON POINT SHIPYARD DREDGING
SEDIMENT SAMPLING AND ANALYSIS PLAN

Appendix 1 - Site description sheet

Appendices 301012-(

CLIENT: BAE Systems	
DATE OF CORING:	
TIME OF CORING:	
Collection Deta	ils
General location of core of sampling location	
Site/location number	
Sample ld.s assigned	
Easting/Longitude of core location (from onboard GPS)	
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments	

Worley Parsons

resources & energy

BAE SYSTEMS
HENDERSON POINT SHIPYARD DREDGING
SEDIMENT SAMPLING AND ANALYSIS PLAN

Appendix 2 - Sediment core log

Sar	mple Location								
Date / Sample Time						-			
De	epth retained						T D		
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist.	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
		4 2							
-									
									h

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

BAE SYSTEMS
BAE DREDGING PROJECT SUPPORT AND CONSULTANCY SERVICES
SEDIMENT QUALITY ASSESSMENT REPORT

Appendix 2 - Site Description Sheet and Sediment Log

SI on last page

301012-01750: BAE Systems Dredging Support and Consultancy Services

CLIENT: BAE Systems

DATE OF CORING: ZY /4/13

TIME OF CORING: 17 30

Collection Details

General location of core of sampling location	
Site/location number	Mo 439 on CPS
Sample Id.s assigned	52
Easting/Longitude of core location (from onboard GPS)	45.150
Northing/Latitude of core location (from onboard GPS)	3345
Water depth at core location	N3m
Sample collector	NW's
Type of core sampler	V
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments O 2 lands Gre, Calm Nil	

Sa	ample Location	52							
Dat	e / Sample Time	24/4/13							
E	epth retained	N3M						ă.	
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or blota	Odour
Î	ht the gray m	the Sand	Н	W	M	W.L	Trace up to 24	5% up	Feint Anox
								9	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay. **Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems

DATE OF CORING: 24/4

TIME OF CORING: 12:50

Collection Details

General location of core of sampling location	53
Site/location number	made 40 on GPS
Sample Id.s assigned	
Easting/Longitude of core location (from onboard GPS)	
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	NUSM
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments AS previous	

Sa	ample Location	53						¥0	
Dat	te / Sample Time								
	Depth retained								
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
/	Grey	Silty sand on chay	H	W	Fine	_	30/ap -to 5cm	vale biota 10°1- up	Marine
5	7	, and the second						to sun	
- 1									
								P 7 1	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems

DATE OF CORING: 24/4/3							
TIME OF CORING: 14,55							
Collection Details							
General location of core of sampling location	Que						
Site/location number	malla on BP						
Sample Id.s assigned	() () () () () () () () () ()						
Easting/Longitude of core location (from onboard GPS)							
Northing/Latitude of core location (from onboard GPS)							
Water depth at core location	Sism						
Sample collector							
Type of core sampler							
Sea state at time of coring							
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)							
General comments							
As previous							

Sample Location Date / Sample Time		ISU							
De	epth retained								
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Field texture** grain	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour	
	Grey	Silty sand	H	W	M	Lan	101/1 up to 10 cm	51: up to 8cm	Manle
2.1									
		*							
								1 7 6	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay. **Field Texture: clay, silt, sand, gravel, etc

CLIE	NT:	BAE	Systems
------	-----	-----	----------------

TIME OF CORING: 15115

Collection Details

Site/location number	SS-Mare 43 on 4
Sample Id.s assigned	
Easting/Longitude of core location (from onboard GPS)	GLAFTZ
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	5.7m
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments	
As previous	

Sample Location		55						
Dat	e / Sample Time							
	epth retained							
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
	D. Gray	Sandy silt	H	rs-M	VIV.	uphosum	Trace	Anoxic
		1-	8					
			to	7		8		
			W.					
		- 1 I I I			3 1	5		
				w) <u>u</u> , =	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay. **Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems

CLIENT: DAE Systems	
DATE OF CORING: 124/4/13	
TIME OF CORING: 15 45	
Collection Detai	ls
General location of core of sampling location	56 - Mark 44 yellow
Site/location number	GPS
Sample Id.s assigned	STI4 STZ
Easting/Longitude of core location (from onboard GPS)	
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	U 8m
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments	
As prendus.	

Sample Location Date / Sample Time		56					· · · · · · · · · · · · · · · · · · ·		
	epth retained					+	-		
Strata Change (m)	Colour* (refer AS1726)	Field texture**		Moist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
	Grey & breys	Sand	Hu	F		Trace up	Truil	marine	
	J. Morre						to 05	smell	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems	11
DATE OF CORING:	1/4
TIME OF CORING:	205

Collection Details

General location of core of sampling location	
Site/location number	ST-Mark to
Sample Id.s assigned	7
Easting/Longitude of core location (from onboard GPS)	WA.
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	41300
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments	

Sample Location Date / Sample Time		57							
				Till					
D	epth retained								
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
	Branch Gray	Sand	H	W	M	MORE DANKY	Trace	705cm	Marine
	9						zen	Trace	
								6,000	
					7,41				

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems

DATE OF CORING: 1

TIME OF CORING:

58 mare 46 m
6.3m

A STATE OF THE STA	ample Location	58							
	te / Sample Time Depth retained	6.3m dent	+						
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour
	Clor with on	Sandy silt	H	858	Gro	Wedlet C	Trace	sheller	Many
	morra						ossom	up to	smell
				1					7
								1 2 1	

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay. **Field Texture: clay, silt, sand, gravel, etc

CLIENT: BAE Systems

DATE OF CORING: 24/4/13

TIME OF CORING: 1200

Collection Details

General location of core of sampling location			
Site/location number			(k)ac
Sample Id.s assigned	51	- Marle	Baron (
Easting/Longitude of core location (from onboard GPS)			
Northing/Latitude of core location (from onboard GPS)			HÁ
Water depth at core location			
Sample collector			
Type of core sampler			Eta.
Sea state at time of coring			
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)			
General comments			

Sample Location Date / Sample Time Depth retained		51 24/4/13 5 Grab																	
										Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or blota	Odour
											<i>ુ</i>	sendy SILT inchests	7.2	veg Leak	fine	-eali (trace up	trace	manne
					-1														
			19																
			7																

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

WorleyParsons

resources & energy

BAE SYSTEMS
BAE DREDGING PROJECT SUPPORT AND CONSULTANCY SERVICES
SEDIMENT QUALITY ASSESSMENT REPORT

Appendix 3 - Raw results

REPORT OF ANALYSIS

Laboratory Reference:

A13/2073

[R00]

Client:

WorleyParsons Services Pty Ltd

Bishop See Building, L1, 235 St Georges Tce

Perth WA 6000

Contact: Nicola Willson

Order No:

301012-01750

Project:

Sediment 301012-01750

Sample Type:

sediment

No. of Samples:

1

Date Received: Date Completed: 15/05/2013

24/024/2013

Laboratory Contact Details:

Client Services Manager:

Jane Struthers

Technical Enquiries:

Andrew Bradbury

Telephone:

+61893259799

Fax:

+61893254299

Email:

perth@advancedanalytical.com.au

andrew.bradbury@advancedanalytical.com.au

Attached Results Approved By:

Ian Eckhard **Technical Director**

Comments:

All samples tested as submitted by client. All attached results have been checked and approved for release. This is the Final Report and supersedes any reports previously issued with this batch number. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Issue Date: 15 May 2013

Page 1 of 4

North Ryde NSW 2113 Australia

Ph: +61 2 9888 9077 Fax: +61298889577

contact@advancedanalytical.com.au www.advancedanalytical.com.au

Batch Number: Project Reference:

A13/2073 [R00] Sediment 301012-01750

Laboratory Reference: Client Reference: Date Sampled: Analysis Description	- - - Method	- - - Units	1 ST2 24/04/2013	
Moisture Content				
Moisture Content	04-004	%	21.8	
Trace Elements				
Arsenic	04-001	mg/kg	3.5	
Chromium	04-001	mg/kg	11	
Copper	04-001	mg/kg	13	
Lead	04-001	mg/kg	2.3	
Nickel	04-001	mg/kg	0.86	
Zinc	04-001	mg/kg	12	
Organotins				
Monobutyl tin	04-026	μgSn/kg	3.4	
Dibutyl tin	04-026	μgSn/kg	4.2	
Tributyl tin	04-026	μgSn/kg	7.4	
Surrogate 1 Recovery	04-026	%	88	
Date Extracted	04-026	-	14/05/2013	
Date Analysed	04-026		. 14/05/2013	
Subcontract Analysis				
Total Organic Carbon	SUB	%	0.25	

Method	thod Method Description						
04-004	Moisture by gravimetric, %						
04-001	Metals by ICP-OES, mg/kg						
04-026	Organotins by GCMS, µgSn/kg						
SUB	Subcontracted Analyses						

Issue Date: 15 May 2013

Page 2 of 4 Ph: +61 2 9888 9077

Environmental Division

E-mail

Order number

CERTIFICATE OF ANALYSIS

Work Order : EP1303024 Page : 1 of 6

Client WORLEY PARSONS - INFRASTRUCTURE MWE Laboratory Environmental Division Perth

Contact NICOLA WILLSON Contact Scott James

Address QV1 Building Lvl 7 Address 10 Hod Way Malaga WA Australia 6090

250 St Georges Tce

PERTH WA, AUSTRALIA 6000

301012-01750-PS-CNT-100513ALS

nicola.willson@worleyparsons.com E-mail perth.enviro.services@alsglobal.com

Telephone ; +61 08 9278 8111 Telephone ; +61-8-9209 7655

Facsimile +61-8-9209 7600

Project 301012-01750 QC Level NEPM 1999 Schedule B(3) and ALS QCS3 requirement

C-O-C number Date Samples Received 26-APR-2013

Sampler NW Issue Date 10-MAY-2013

Site BAE Dredging Project

No. of samples received

Quote number EP/386/13 No. of samples received 11

No. of samples analysed 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Hamish Murray

Laboratory Supervisor

Matt Frost

Senior Organic Chemist

Senior Organic Chemist

Brisbane Inorganics

Matt Frost

Senior Organic Chemist

Brisbane Organics

SATISH TRIVEDI

SATISH.TRIVEDI 2 IC Acid Sulfate Soils Supervisor Brisbane Acid Sulphate Soils

Stephen Hislop Senior Inorganic Chemist Brisbane Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600

Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

Work Order EP1303024

Client WORLEY PARSONS - INFRASTRUCTURE MWE

2 of 6

Project 301012-01750

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

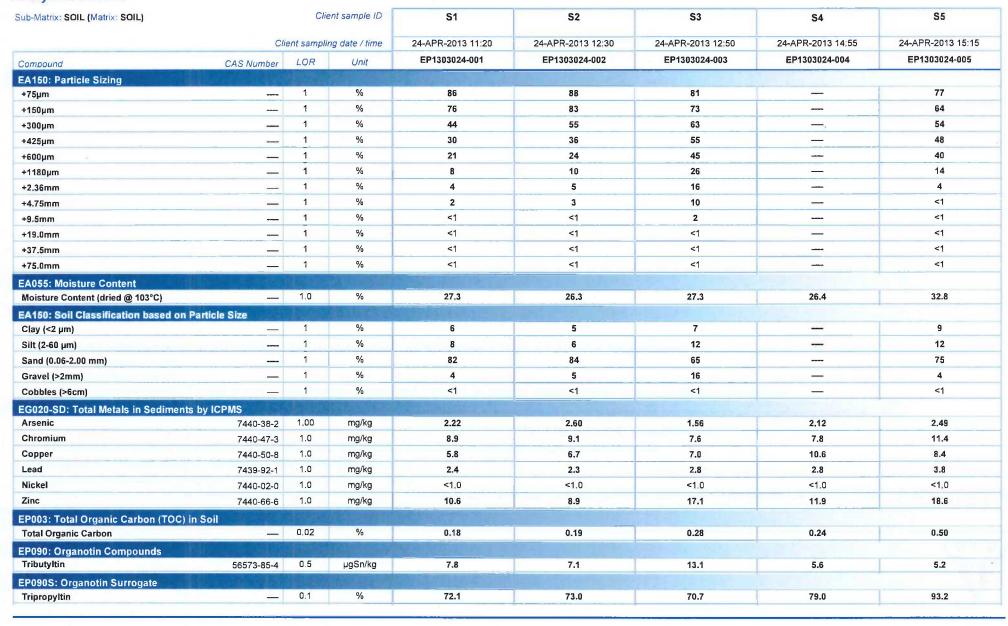
LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

EG020-SD (Total Metals in Sediments): Ni LOR raised for samples EB1303024-006 (S6), --007 (S7), -008 (S8), -010 (FT2), -011 (ST1) due to matrix interference.

3 of 6

Work Order


EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

 Page
 4 of 6

 Work Order
 EP1303024

Client WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clier	nt sample ID	S6	S 7	S8	FT1	FT2
	Client sampling date / time		24-APR-2013 15:45	24-APR-2013 16:05	24-APR-2013 16:30	24-APR-2013 11:20	24-APR-2013 11:20	
Compound	CAS Number	LOR	Unit	EP1303024-006	EP1303024-007	EP1303024-008	EP1303024-009	EP1303024-010
EA150: Particle Sizing			1200	A TOTAL PROPERTY.				
+75µm	_	1	%	89	86	85		
+150µm		1	%	73	62	67		_
+300µm		1 .	%	29	40	54	-	
+425µm		1	%	14	34	45		
+600µm	_	1	%	7	26	33		
+1180µm	_	1	%	1	12	8	_	
+2.36mm		1	%	<1	7	1	_	
+4.75mm		1	%	<1	3	<1		
+9.5mm		1	%	<1	2	<1		1200
+19.0mm	_	1	%	<1	<1	<1	-	
+37.5mm		1	%	<1	<1	<1	_	305
+75.0mm	_	1	%	<1	<1	<1		2-1100
EA055: Moisture Content	STREET,	35 V 65 V	1233.119					
Moisture Content (dried @ 103°C)		1.0	%	28.5	29.2	32,2	28.0	46.0
EA150: Soil Classification based on F	Particle Size		100000	CARL STORY OF STREET				
Clay (<2 µm)	_	1	%	3	4	6		_
Silt (2-60 µm)		1	%	7	g	8	_	_
Sand (0.06-2.00 mm)		1	%	90	80	85	_	
Gravel (>2mm)	_	1	%	<1	7	1		
Cobbles (>6cm)		1	%	<1	<1	<1		
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	2.22	2.20	1.78	2,26	2.65
Chromium	7440-47-3	1.0	mg/kg	11.5	10.5	9.9	10.5	13.9
Copper	7440-50-8	1.0	mg/kg	7.4	7.7	4.9	6.6	9.4
Lead	7439-92-1	1.0	mg/kg	2.3	2.8	2.8	3.4	5.2
Nickel	7440-02-0	1.0	mg/kg	<5.0	<5.0	<5.0	<1.0	<5.0
Zinc	7440-66-6	1.0	mg/kg	13.1	14.7	11.9	14.2	19.9
EP003: Total Organic Carbon (TOC) is	n Soil	60,000	Carlo Barrier					
Total Organic Carbon		0.02	%	0.18	0.24	0.34	0.45	0.50
EP090: Organotin Compounds		NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,		THE RESERVE OF THE PARTY OF THE				
Tributyltin	56573-85-4	0.5	µgSn/kg	16.9	12.3	3.1	6.4	12.6
EP090S: Organotin Surrogate							TO THE TAX OF THE PARTY OF THE	
Tripropyltin		0.1	%	94.5	90.3	79.6	86.2	88.5

5 of 6

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

Page Work Order

6 of 6 EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP090S: Organotin Surrogate			
Tripropyltin		35	130

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

MWE

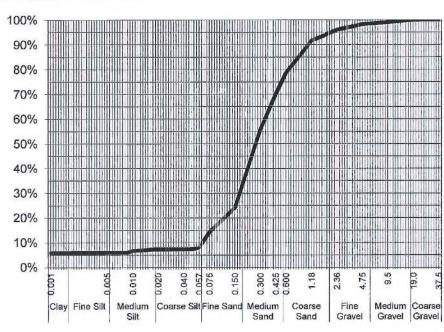
REPORT NO:

EP1303024-001 / PSD

ADDRESS:

QV1 Building Lvl 7

250 St Georges Tce


PROJECT:

Perth, WA 6000 301012-01750

SAMPLE ID:

S1

Particle Size Distribution

Particle Size (mm)	Percent Passing
19.0	100%
9.5	99%
4.75	98%
2.36	96%
1.18	92%
0.600	79%
0.425	70%
0.300	56%
0.150	24%
0.075	14%
Particle Size (microns)	
57	8%
40	7%
20	7%
10	7%
5	6%
4	6%
1	6%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Sample Comments:

Analysed:

10-May-13

0.225

Loss on Pretreatment

NA

Limit of Reporting: 1%

Median Particle Size (mm)

Sample Description:

Sand and shell

Dispersion Method Shaker

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray

Laboratory Supervisor, Newcastle **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road 2304 Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

MWE

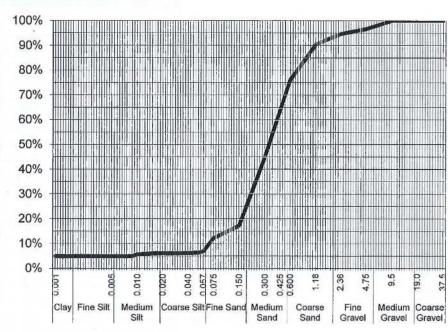
ADDRESS:

QV1 Building Lvl 7

REPORT NO:

EP1303024-002 / PSD

250 St Georges Tce Perth, WA 6000


S2

PROJECT:

301012-01750

SAMPLE ID:

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	97%
2.36	95%
1.18	90%
0.600	76%
0.425	64%
0.300	45%
0.150	17%
0.075	12%
Particle Size (microns)	
57	7%
40	6%
20	6%
10	6%
5	5%
4	5%
1	5%

0.300 Median Particle Size (mm)

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Sample Comments:

Analysed:

10-May-13

Loss on Pretreatment Sample Description:

Sand and shell

Limit of Reporting: 1%

Dispersion Method Shaker

AS1289.3.6.3

Test Method:

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

2.65

g/cm3

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray

Laboratory Supervisor, Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

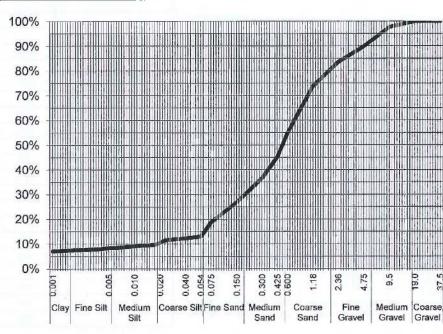
MWE

REPORT NO:

EP1303024-003 / PSD

ADDRESS:

QV1 Building Lvl 7 250 St Georges Tce


PROJECT:

Perth, WA 6000 301012-01750

SAMPLE ID:

S3

Particle Size Distribution

Dartiala Ciza (mm)	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	98%
4.75	90%
2.36	84%
1.18	74%
0.600	55%
0.425	45%
0.300	37%
0.150	27%
0.075	19%
Particle Size (microns)	
54	13%
40	12%
20	10%
10	9%
5	8%
4	8%
1	7%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Sample Comments:

Analysed:

10-May-13

0.425

Loss on Pretreatment

NA

Limit of Reporting: 1%

Median Particle Size (mm)

Sample Description:

Sand, silty clay and shell

Dispersion Method Shaker

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

2.65

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray Laboratory Supervisor, Newcastle

Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

MWE

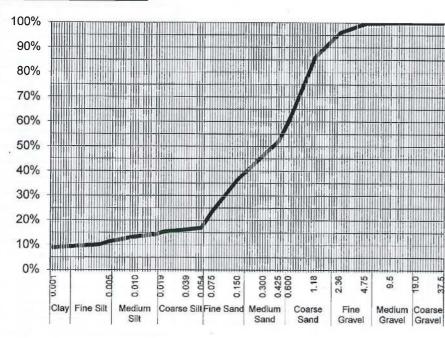
ADDRESS:

QV1 Building Lvl 7

REPORT NO:

EP1303024-005 / PSD

250 St Georges Tce Perth, WA 6000


PROJECT:

301012-01750

SAMPLE ID:

S5

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	96%
1.18	86%
0.600	61%
0.425	52%
0.300	46%
0.150	37%
0.075	23%
Particle Size (microns)	
54	17%
39	16%
19	15%
10	13%
5	11%
4	10%
1	9%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size (mm)

10-May-13

0.300

Sample Comments:

Loss on Pretreatment

Analysed:

Sample Description:

Sand, silty clay and shell

Dispersion Method Shaker

Limit of Reporting: 1%

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

2.65

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray

Laboratory Supervisor, Newcastle Authorised Signatory

Page 1 of 1

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

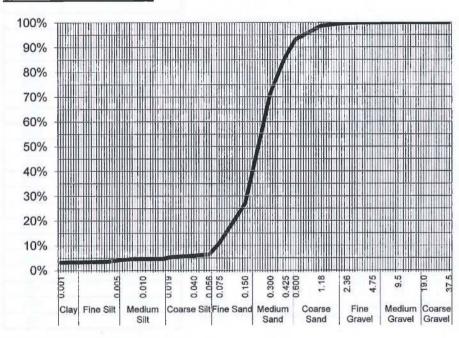
ADDRESS:

MWE QV1 Building Lvl 7

REPORT NO:

EP1303024-006 / PSD

250 St Georges Tce


PROJECT:

Perth, WA 6000 301012-01750

SAMPLE ID:

S6

Particle Size Distribution

	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	100%
1.18	99%
0.600	93%
0.425	86%
0.300	71%
0.150	27%
0.075	11%
Particle Size (microns)	
56	6%
40	6%
19	5%
10	5%
5	4%
4	4%
1	3%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Sample Comments:

Analysed:

10-May-13

0.150

Loss on Pretreatment

NA

Limit of Reporting: 1%

Median Particle Size (mm)

Sample Description:

Sand and shell

Dispersion Method Shaker

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray

Laboratory Supervisor, Newcastle **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

ADDRESS:

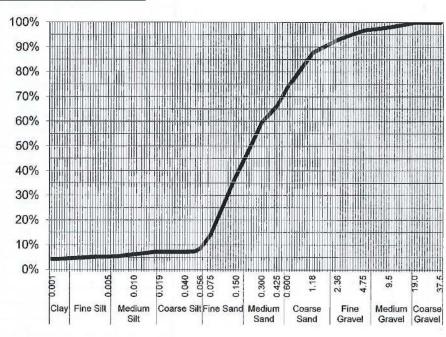
MWE QV1 Building Lvl 7

REPORT NO:

EP1303024-007 / PSD

250 St Georges Tce

Perth, WA 6000


PROJECT:

301012-01750

SAMPLE ID:

S7

Particle Size Distribution

Particle Size (mm)	Percent Passing
0	
19.0	100%
9.5	98%
4.75	97%
2.36	93%
1.18	88%
0.600	74%
0.425	66%
0.300	60%
0.150	38%
0.075	14%
Particle Size (microns)	
56	9%
40	7%
19	7%
10	6%
5	5%
4	5%
1	4%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Analysed:

Median Particle Size (mm)

10-May-13

0.150

Loss on Pretreatment

Sample Comments:

Limit of Reporting: 1%

Sample Description:

Sand and shell

Dispersion Method Shaker

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

g/cm3

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray

Laboratory Supervisor, Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5 Rosegum Road Warabrook, NSW pH 02 4968 9433 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:

Nicola Willson

DATE REPORTED:

10-May-2013

COMPANY:

Worley Parsons - Infrastructure

DATE RECEIVED:

26-Apr-2013

MWE

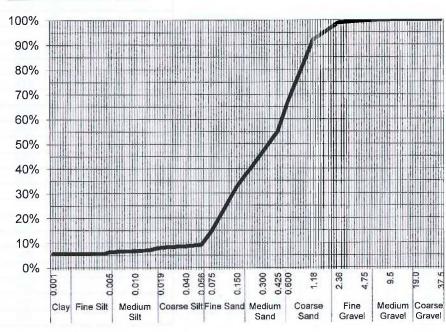
REPORT NO:

EP1303024-008 / PSD

ADDRESS:

QV1 Building Lvl 7

250 St Georges Tce


PROJECT:

Perth, WA 6000 301012-01750

SAMPLE ID:

S8

Particle Size Distribution

De diele Oiee (esse)	Percent
Particle Size (mm)	Passing
19.0	100%
9.5	100%
4.75	100%
2.36	99%
1.18	92%
0.600	67%
0.425	55%
0.300	47%
0.150	33%
0.075	15%
Particle Size (microns)	
56	9%
40	9%
19	8%
10	7%
5	6%
4	6%
1	6%

Samples analysed as received.

Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

2.65

Sample Comments:

Analysed:

Median Particle Size (mm)

10-May-13

0.300

Loss on Pretreatment

NA

Limit of Reporting: 1%

Sample Description:

Sand and shell

Dispersion Method Shaker

Test Method:

AS1289.3.6.3

Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hamish Murray Laboratory Supervisor, Newcastle

Authorised Signatory

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order EB1311906 Page 1 of 7 Client **WORLEY PARSONS - INFRASTRUCTURE MWE Environmental Division Brisbane** Laboratory NICOLA WILLSON Customer Services Contact Contact Address Address 2 Byth Street Stafford QLD Australia 4053 QV1 Building Lvl 7 250 St Georges Tce PERTH WA, AUSTRALIA 6000 E-mail nicola.willson@worleyparsons.com E-mail Brisbane.Enviro.Services@alsglobal.com Telephone +61 08 9278 8111 Telephone +61 7 3243 7222 Facsimile Facsimile +61 7 3243 7218 Project 301012-01750 QC Level NEPM 1999 Schedule B(3) and ALS QCS3 requirement Order number 301012-01750-PS-CNT-100513ALS C-O-C number Date Samples Received 17-MAY-2013 Sampler Nicola Willson Issue Date 28-MAY-2013 Site **BAE Dredging Site** No. of samples received 6 Quote number EN/034/12 No. of samples analysed 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Matt Frost
 Senior Organic Chemist
 Brisbane Inorganics

 Matt Frost
 Senior Organic Chemist
 Brisbane Organics

Address 2 Byth Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218
Environmental Division Brisbane -85N 84 009 936 029 Part of the ALS Group An ALS Limited Company

2 of 7

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

3 of 7 EB1311906

Work Order

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Sub-Matrix: ASLP LEACHATE (Matrix: WATER)	Cli		ent sample ID	S3 ASLP LEACH 20-MAY-2013 15:00	S6 ASLP LEACH 20-MAY-2013 15:00	\$7 ASLP LEACH 20-MAY-2013 15:00	S3 DI LEACH 22-MAY-2013 14:00	S6 DI LEACH 22-MAY-2013 14:00
Compound	CAS Number	LOR	Unit	EB1311906-001	EB1311906-002	EB1311906-003	EB1311906-004	EB1311906-005
EP090: Organotin Compounds (Soluble)								
Tributyltin	56573-85-4	2	ngSn/L	7	8	5	13	8
EP090S: Organotin Surrogate			(A) (A) (A)		THE REAL PROPERTY.			
Tripropyltin	_	0.1	%	61.5	61.2	65.2	76.2	90.8

4 of 7 EB1311906

Work Order

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Sub-Matrix: ASLP LEACHATE (Matrix: WATER)	Client sample ID Client sampling date / time			S7 DI LEACH 22-MAY-2013 14:00				
ompound CAS Number LOR Unit		EB1311906-006		****				
EP090: Organotin Compounds (Soluble)		Allahite						
Tributyltin	56573-85-4	2	ngSn/L	10	****		****	
EPOSOS: Organolin Surrogala	THE PARTY OF THE	P. 41	TO THE	DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME				
Tripropyltin		0.1	%	80.0	_	_	-	_

Page Work Order

5 of 7 EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Sub-Matrix: SOIL (Matrix: SOIL)	Ch		ent sample ID ng date / time	S3 ASLP LEACH 24-APR-2013 12:50	S6 ASLP LEACH 24-APR-2013 15:45	S7 ASLP LEACH 24-APR-2013 16:05	S3 DI LEACH 24-APR-2013 12:50	S6 DI LEACH 24-APR-2013 15:45
Compound	CAS Number	LOR	Unit	EB1311906-001	EB1311906-002	EB1311906-003	EB1311906-004	EB1311906-005
EN60: ASLP Leaching Procedure						Market Harris		
Initial pH	-	0.1	pH Unit	9.0	9.2	9.1		_
After HCI pH		0.1	pH Unit	2.5	2.4	2.4		_
Extraction Fluid pH		0.1	pH Unit	5.0	5.0	5.0		
Final pH	_	0,1	pH Unit	7.0	6.9	6.9		
EN60: Bottle Leaching Procedure	A COLUMN	1200	A COLUMN	THE PERSON NAMED IN				
Final pH		0.1	pH Unit	_	_		8.8	8.9

Work Order

6 of 7 EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Sub-Matrix: SOIL (Matrix: SOIL)	*	Client sample ID		S7 DI LEACH		 	
		ent samplii	ng date / time	24-APR-2013 16:05	_	 	
Compound	CAS Number	LOR	Unit	EB1311906-006		 	
EN60: Bottle Leaching Procedure							
Final pH		0.1	pH Unit	8.9	_	 _	_

7 of 7 EB1311906

Work Order

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Surrogate Control Limits

Sub-Matrix: ASLP LEACHATE		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP090S: Organotin Surrogate					
Tripropyltin		24	116		

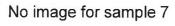
Worley Parsons

resources & energy

BAE SYSTEMS
BAE DREDGING PROJECT SUPPORT AND CONSULTANCY SERVICES
SEDIMENT QUALITY ASSESSMENT REPORT

Appendix 4 - Sediment log and photos

Site number	Date sampled	Time Sampled	Water Depth (m)	Depth Retained (m)	Colour (refer AS1726)	Field texture	Moisture	Consistency	Sand grain size	Plasticity	% stones	% Shell/grlt	% biota	Odour
1	24/04/2013	11.20	3	Grab	Grey	Sandy slit	Н	Very weak	Fine	Low	Trace up to 3 cm	Trace		Marine
2	24/04/2013	12:30	3	Grab	Light brown with grey mottle	Sand	Н	Weak	Medium	Low	Trace up to 2 cm	5% up to 4 cm		Feint anoxic
3	24/04/2013	12:50	4.5	Grab	Grey	Sandy slit with grey mottle	Н	Weak	Fine	Low	20% up to 5 cm	10% up to 5 cm	Trace	Marine
4	24/04/2013	14.55	5.5	Grab	Grey	Silty sand	Н	Very weak	Medium	Low	10% up to 10 cm	5% up to 8 cm		Manne
5	24/04/2013	15.15	57	Grab	Dark grey	Sandy silt	Н	Very weak	Fine to medium	Nil	Trace up to 3 cm	Trace up to 3 cm		Anoxic
6	24/04/2013	15:45	4.8	Grab	Grey with light brown mottle	Sand	Н	Very weak	Fine	Low	Trace up to 0.5 cm	Trace up to 0.5 cm		Marine with ammonia
7	24/04/2013	16:05	4.3	Grab	Grey	Sand	Н	Very weak	Medium	Low	Trace up to 2 cm	5% up to 5 cm	Trace	Manne
8	24/04/2013	16:30	6.3	Grab	Grey with light brown mattle	Sandy silt	н	Very weak	Fine	Low	Trace up to 0.5 cm	Trace up to 0.5 cm		Marine with ammonia



WorleyParsons

resources & energy

BAE SYSTEMS
BAE DREDGING PROJECT SUPPORT AND CONSULTANCY SERVICES
SEDIMENT QUALITY ASSESSMENT REPORT

Appendix 5 - Laboratory QA/QC results

REPORT OF ANALYSIS

Laboratory Reference:

A13/2073

[R00]

Client:

WorleyParsons Services Pty Ltd

Bishop See Building, L1, 235 St Georges Tce

Perth WA 6000

Contact: Nicola Willson

Order No:

301012-01750

Project:

Sediment 301012-01750

Sample Type:

sediment

No. of Samples:

Date Received:

24/024/2013

Date Completed: 15/05/2013

Laboratory Contact Details:

Client Services Manager:

Jane Struthers

Technical Enquiries:

Andrew Bradbury

Telephone:

+61893259799

Fax:

+61893254299

Email:

perth@advancedanalytical.com.au

andrew.bradbury@advancedanalytical.com.au

Attached Results Approved By:

lan Eckhard Technical Director

Comments:

All samples tested as submitted by client. All attached results have been checked and approved for release. This is the Final Report and supersedes any reports previously issued with this batch number. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Issue Date: 15 May 2013

Page 1 of 4

Advanced Analytical Australia Pty Ltd ABN 20105644979

11 Julius Avenue

North Ryde NSW 2113 Australia

Ph: +61 2 9888 9077 Fax: +61298889577

contact@advancedanalytical.com.au www.advancedanalytical.com.au

Batch Number: Project Reference:

A13/2073 [R00]

Sediment 301012-01750

QUALITY ASSURANCE REPORT

TEST	UNITS	Blank	Duplicate Sm#	Duplicate Results	Spike Sm#	Spike Results
Arsenic	mg/kg	<0.4	A13/2073-1	3.5 3.5 RPD:0	A13/2069-A/01	103%
Chromium	mg/kg	<0.1	A13/2073-1	11 11 RPD:0	A13/2069-A/01	101%
Copper	mg/kg	<0.1	A13/2073-1	13 12 RPD: 8	A13/2069-A/01	98%
Lead	mg/kg	<0.5	A13/2073-1	2.3 2.5 RPD:8	A13/2069-A/01	92%
Nickel	mg/kg	<0.1	A13/2073-1	0.86 0.92 RPD:7	A13/2069-A/01	96%
Zinc	mg/kg	<0.5	A13/2073-1	12 12 RPD:0	A13/2069-A/01	98%

TEST	UNITS	Blank	Duplicate Sm#	Duplicate Results	Spike Sm#	Spike Results
Monobutyl tin	μgSn/kg	< 0.50	[NT]	[NT]	A13/2154-1	76%
Dibutyl tin	μgSn/kg	< 0.50	[NT]	[NT]	A13/2154-1	89%
Tributyl tin	μgSn/kg	< 0.50	[NT]	[NT]	A13/2154-1	84%
Surrogate 1 Recovery	%	101	[NT]	[NT]	A13/2154-1	92%

TEST	UNITS	Blank
Total Organic Carbon	%	<0.01

Comments:

RPD = Relative Percent Deviation

[NT] = Not Tested [N/A] = Not Applicable

'#' = Spike recovery data could not be calculated due to high levels of contaminants

Acceptable replicate reproducibility limit or RPD: Results < 10 times LOR: no limits.

Results > 10 times LOR: 0% - 50%.

Acceptable matrix spike & LCS recovery limits:

Trace elements 70-130%

Organic analyses 50-150%

SVOC & speciated phenols 10-140%

Surrogates 10-140%

When levels outside these limits are obtained, an investigation into the cause of the deviation is performed before the batch is accepted or rejected, and results are released.

Issue Date: 15 May 2013

Page 4 of 4

Advanced Analytical Australia Pty Ltd ABN 20105644979

11 Julius Avenue

North Ryde NSW 2113 Australia

Ph: +61 2 9888 9077 Fax: +61 2 9888 9577

contact@advancedanalytical.com.au www.advancedanalytical.com.au

Environmental Division

QUALITY CONTROL REPORT

Work Order	EP1303024	Page	1 of 5
Client	WORLEY PARSONS - INFRASTRUCTURE MWE	Laboratory	: Environmental Division Perth
Contact	NICOLA WILLSON	Contact	Scott James
Address	QV1 Building Lvl 7	Address	10 Hod Way Malaga WA Australia 6090
	250 St Georges Tce PERTH WA, AUSTRALIA 6000		
E-mail	nicola.willson@worleyparsons.com	E-mail	perth.enviro.services@alsglobal.com
Telephone	+61 08 9278 8111	Telephone	+61-8-9209 7655
Facsimile		Facsimile	+61-8-9209 7600
Project	301012-01750	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	BAE Dredging Project		
C-O-C number	1 	Date Samples Received	26-APR-2013
Sampler	NW	Issue Date	10-MAY-2013
Order number	301012-01750-PS-CNT-100513ALS		
		No. of samples received	a 11
Quote number	EP/386/13	No. of samples analysed	11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report, Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Hamish Murray	Laboratory Supervisor	Newcastle - Inorganics
Matt Frost	Senior Organic Chemist	Brisbane Inorganics
Matt Frost	Senior Organic Chemist	Brisbane Organics
SATISH.TRIVEDI	2 IC Acid Sulfate Soils Supervisor	Brisbane Acid Sulphate Soils
Stephen Hislop	Senior Inorganic Chemist	Brisbane Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsbrile +61-8-9209 7600
Environmental Division Perth ABM 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page 2 of 5

Work Order EP1303024

Client WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

3 of 5

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (QC Lot: 284481)								
EB1310009-022	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	1.8	1.9	10.0	No Limit
EB1310009-029	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	2.6	2.4	5.4	No Limit
EAGSE: Mainture Co	mbut (QC Lat: 204481)		Park Internal						
EP1303024-007	S7	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	29.2	29.9	2.4	0% - 20%
ES1309459-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	<1.0	<1.0	0.0	No Limit
EG020-SD: Total Me	tals in Sediments by IC	PMS (QC Lot: 2848366)				ALIE STATE	Se Francis		
EP1303024-001	S1	EG020-SD: Chromium	7440-47-3	1.0	mg/kg	8.9	8.3	7.6	0% - 20%
		EG020-SD: Copper	7440-50-8	1.0	mg/kg	5.8	5.5	5.1	No Limit
		EG020-SD: Lead	7439-92-1	1.0	mg/kg	2,4	2.0	18.0	0% - 20%
		EG020-SD: Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	0.0	No Limit
		EG020-SD: Zinc	7440-66-6	1.0	mg/kg	10.6	10.2	3.8	0% - 20%
		EG020-SD: Arsenic	7440-38-2	1.00	mg/kg	2.22	1.85	17.9	0% - 20%
EP1303024-011	ST1	EG020-SD: Chromium	7440-47-3	1.0	mg/kg	10.7	12.3	13.3	0% - 50%
		EG020-SD: Copper	7440-50-8	1.0	mg/kg	7.1	7.3	2.9	No Limit
		EG020-SD: Lead	7439-92-1	1.0	mg/kg	2.4	2.5	0.0	No Limit
		EG020-SD: Nickel	7440-02-0	1.0	mg/kg	<5.0	<5.0	0.0	No Limit
		EG020-SD: Zinc	7440-66-6	1.0	mg/kg	14.4	13.7	5.2	0% - 20%
		EG020-SD: Arsenic	7440-38-2	1.00	mg/kg	2.03	1.91	6.1	0% - 20%
EP003: Total Organi	ic Carbon (TOC) in Soil	(QC Lot: 2846012)							
EB1309937-015	Anonymous	EP003: Total Organic Carbon		0.02	%	0.06	0.05	0.0	No Limit
EP1303024-007	S7	EP003: Total Organic Carbon	_	0.02	%	0.24	0.27	12.7	0% - 50%
EP090: Organotin C	ompounds (QC Lot: 28	44815)	THE RESERVE						
EP1303024-001	S1	EP090: TributyItin	56573-85-4	0.5	μgSn/kg	7.8	6.8	13.8	0% - 20%

4 of 5

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG829-60: Total Matela is Sediments by IC	:PMS (QCLot: 2040366)								
EG020-SD: Arsenic	7440-38-2	1.0	mg/kg	<1.00	21.7 mg/kg	106	74	126	
EG020-SD: Chromium	7440-47-3	1.0	mg/kg	<1.0	43.9 mg/kg	95.0	79	129	
EG020-SD: Copper	7440-50-8	1.0	mg/kg	<1,0	32.0 mg/kg	112	80	125	
EG020-SD: Lead	7439-92-1	1.0	mg/kg	<1.0	40.0 mg/kg	108	72	122	
EG020-SD: Nickel	7440-02-0	1.0	mg/kg	<1.0	55.1 mg/kg	98.8	77	123	
EG020-SD: Zinc	7440-66-6	1.0	mg/kg	<1.0	60.8 mg/kg	121	71	127	
EP003: Total Organic Carbon (TOC) in Soil	(QCLot: 2846012)	SECTION AND ADDRESS.	THE RESERVE						
EP003: Total Organic Carbon		0.02	%	<0.02	0.11 %	104	70	130	
EP090: Organotin Compounds (QCLot: 284	44815)		THE RESERVE						
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	66.7	45	134	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
			Spike	SpikeRecovery(%)	Recovery Limits (%)		
aboratory sample ID Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 2	2848366)						
EP1303024-002 S2	EG020-SD: Arsenic	7440-38-2	50 mg/kg	114	70	130	
	EG020-SD: Chromium	7440-47-3	50 mg/kg	114	70	130	
	EG020-SD: Copper	7440-50-8	50 mg/kg	101	70	130	
	EG020-SD: Lead	7439-92-1	50 mg/kg	108	70	130	
	EG020-SD: Nickel	7440-02-0	50 mg/kg	97.1	70	130	
	EG020-SD: Zinc	7440-66-6	50 mg/kg	98.5	70	130	
EP090: Organotin Compounds (QCLot: 2844815)							
EP1303024-002 S2	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	# Not Determined	20	130	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Work Order

5 of 5 EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Sub-Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP090: Organotin	Compounds (QCLot: 284481	5)								
EP1303024-002	S2	EP090: TributyItin	56573-85-4	1.25 µgSn/kg	# Not Determined	-	20	130	3 51-0 3	1-1-1
EG020-SD: Total I	Metals in Sediments by ICPMS	(QCLot: 2848366)								
EP1303024-002 S2	EG020-SD: Arsenic	7440-38-2	50 mg/kg	114		70	130		-	
	EG020-SD: Chromium	7440-47-3	50 mg/kg	114		70	130	112000		
	EG020-SD: Copper	7440-50-8	50 mg/kg	101		70	130	1	-	
	EG020-SD: Lead	7439-92-1	50 mg/kg	108	e-marie	70	130			
	EG020-SD: Nickel	7440-02-0	50 mg/kg	97.1		70	130	-	1	
	EG020-SD: Zinc	7440-66-6	50 mg/kg	98.5		70	130	1122	12024	

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

EP1303024 Work Order Page 1 of 6 Client WORLEY PARSONS - INFRASTRUCTURE MWE Laboratory Environmental Division Perth Contact NICOLA WILLSON Contact Scott James Address QV1 Building Lvl 7 Address 10 Hod Way Malaga WA Australia 6090 250 St Georges Tce PERTH WA. AUSTRALIA 6000 E-mail nicola.willson@worleyparsons.com E-mail perth.enviro.services@alsglobal.com Telephone +61 08 9278 8111 Telephone +61-8-9209 7655 Facsimile Facsimile +61-8-9209 7600 Project 301012-01750 QC Level NEPM 1999 Schedule B(3) and ALS QCS3 requirement Site **BAE Dredging Project** C-O-C number Date Samples Received 26-APR-2013 Sampler NW Issue Date : 10-MAY-2013 Order number 301012-01750-PS-CNT-100513ALS No. of samples received 11 Quote number EP/386/13 No. of samples analysed 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600
Environmental Division Perth Add 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

2 of 6

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	x = Holding time	breach : ✓ = Withir	holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content			STATE OF THE PARTY.					
Soil Glass Jar - Unpreserved (EA055-1	103)							
S1,	S2,	24-APR-2013		••••		30-APR-2013	08-MAY-2013	1
S3,	S4,						*8	
S5,	S6,							
S7,	S8,							
FT1,	FT2,							
ST1								
EA150: Particle Sizing								
Snap Lock Bag (EA150H)								
S1,	S2,	24-APR-2013	7.77	21-OCT-2013		09-MAY-2013	21-OCT-2013	1
S3,	S5,					-		
S6,	S7,							
S8								
EA150: Soil Classification based on F	Particle Size							
Snap Lock Bag (EA150H)								
S1,	S2,	24-APR-2013		21-OCT-2013		09-MAY-2013	21-OCT-2013	1
S3,	S5,							
S6,	S7,							
S8								
EG020-SD: Total Metals in Sediments	by ICPMS							
Soil Glass Jar - Unpreserved (EG020-S								
S1,	S2,	24-APR-2013	02-MAY-2013	21-OCT-2013	1	03-MAY-2013	21-OCT-2013	V
S3,	S4,							
S5,	S6,							
S7,	S8,							
FT1,	FT2,							
ST1								

3 of 6 EP1303024

Work Order

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Matrix: SOIL					Evaluation	😕 = Holding time	breach; ✓ = Within	n holding tim
Method Container / Client Sample ID(s)		Sample Date	Extraction / Preparation			Analysis		
		The second second	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP003: Total Organic Carbon (TO	C) in Soil				11/4			
Pulp Bag (EP003)								
S1,	S2,	24-APR-2013	01-MAY-2013	22-MAY-2013	1	02-MAY-2013	22-MAY-2013	1
S3,	S4,							
\$5 ,	S6,							
S7,	S8,							
FT1,	FT2,							
ST1								
EP108: Organolin Compounds								
ioil Glass Jar - Unpreserved (EP09	10)							
S1,	S2,	24-APR-2013	30-APR-2013	08-MAY-2013	1	02-MAY-2013	09-JUN-2013	1
S3,	S4,	The second secon						
S5,	S6,							
S7,	S8,							
FT1,	FT2,							
ST1								

4 of 6

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Totality Control Sample Type Count	Rate (%) Actual Expected		Quality Control Specification
	Actual Expected		
Analytical Methods Method QC Regular		Evaluation	
aboratory Duplicates (DUP)			
Noisture Content EA055-103 4 31	12.9 10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Organotin Analysis EP090 1 9	11.1 10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals in Sediments by ICPMS EG020-SD 2 11	18.2 10.0	/	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon EP003 2 15	13.3 10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)			
Organotin Analysis EP090 1 9	11.1 5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals in Sediments by ICPMS EG020-SD 1 11	9.1 5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon EP003 1 15	6.7 5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)			
Organotin Analysis EP090 1 9	11.1 5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Metals in Sediments by ICPMS EG020-SD 1 11	9.1 5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
otal Organic Carbon EP003 1 15	6.7 5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)			
Organotin Analysis EP090 1 9	11.1 5.0	1	ALS QCS3 requirement
Total Metals in Sediments by ICPMS EG020-SD 1 11	9.1 5.0	1	ALS QCS3 requirement

5 of 6

Work Order

EP1303024

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Organic Carbon	EP003	SOIL	In-house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
Organotin Analysis	EP090	SOIL	(USEPA SW 846 - 8270D) Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quantified against an established calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)
Organotin Sample Preparation	ORG35	SOIL	In house. 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

6 of 6

Work Order

EP1303024

301012-01750

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

ALS

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP090: Organotin Compounds	EP1303024-002	S2	Tributyltin	56573-85-4	Not Determined	****	MS recovery not determined, background level greater than or equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

A13 2073

Due: 10/5/13

ROM	Chent Address: Tel:	WORLEY I Level 1, Bishop 63116340	See, 235 St Georg	es Tce 92788110	TO	7 Forrest :	Ave, East P	FICAL AUSTR Perth WA 600 13 917 339)	14	Fax: 08 932	5 4299	
	Project Mai Project Ref		Am. 301012-01750	anda Blank	sby	Contact: Jo Email:	ine Struther: cedanalytica		cenh@ad.	ancedanalyti	cal.com.au	
		Its to: Nicola W	illson				a de de la companya d	ANALYSE	S .			
aboratory I		Client ID	Sample Date	Tinie	Matrix			r e				
Too I					Marine Sediment	Bottles	Other	(Arsenic, Chromium, Copper, Lead, Nickel and Zinc)	181	Moisture content	1063	
Au To	18-	ST2	24/04/2013			2 jars		· ·		J	- /	
											(6 <u>)</u>	
									0 0 /		- July	
RELINQ	UISHED B	Nicola Wills	on	Date:	26/04/20	13	RECEIV	ED BY:		NE		6 APP 201

СНА	N OF CUSTODY	DOC	JMENT	TATIO	N																			A
CLIENT:	WorleyParsons						SAMPLER:		Nicola	Wills	on													
ADDRESS	/ OFFICE: Bishop See Building,	Level 1, 23	5 St Georges	Tce. Perl	h, 6000		MOBILE.			04329	7243	â											185	(ALS)
PROJECT	MANAGER (PM): Amanda Blanks	by (Contact	: Nicola Wills	on)			PHONE																	Australian Laboratory Services Pty Ltd
	ID: 301012-01750						EMAIL REPORT TO				Nicol	a.Willso	n@wor	leypai	rsons.c	om			127				-5.00	
SITE: BA	E Dredging Project			P.O. NO.:			FMAIL INVOICE TO				nicola	a.willso	@worle	eypars	ons.co	<u>m</u>				- II - Stills				
RESULTS	REQUIRED (Date):			QUOTE N	D.: EP/386/13		ANALYSIS REQUIR	ED incl	uding	SUITES	S (note	- suite c	odes mus	t be lis	ted to at	tract s	uite price	es)						
	DRATORY USE ONLY SEAL (circle appropriate)	COMM	ENTS / SPEC	CIAL HANI	DLING / STORAGE OR	DIPOSAL:	Metals (Arsenic, Copper, Lead, Nickel,		W.E.															Notes: e.g. Highly contaminated samples, Extra volume for QC or trace LCRs etc.
Intact: SAMPLE	Yes No N/A TEMPERATURE	Marine sec	diments				etals (/		content															
CHILLED:	Yes No	L					% E ∑ O		o cor															
	SAMPLE INFORMATION (note:	S = Soil, W	/=Water)		CONTAINER INFO	RMATION	i ra		ture										1					
ALS ID	SAMPLE ID	MATRIX	DATE	Time	Jars	Bags	Ultra trace M Chromium, (Zinc)	PSD	Moisture	181	TOCs													
- 4	S1	SED	24/4/13	11:20	2 jars	2 bags	1	1	1	1	1									30				
	S2	SED	24/4/13	12:30	2 jars	1 bag	1	1	1	1	1					1				13				
	S3	SED	24/4/13	12:50	2 jars	1 bag	1	1	1	1	1													
- 8	54	SED	24/4/13	14:55	2 jars	1 bag	-		1	1	1													1
	S 5	SED	24/4/13	15:15	2 jars	2 bags	· /	1	W.	1	1		8 .	1						7				
	S6	SED	24/4/13	15:45	2 jars	1 bag	1	1		1	1													
	S7	SED	24/4/13	16:05	2 jars	1 bag	1	1		1	1		al validade de la constante de											
	S8	SED	24/4/13	16:30	2 jars	1 bag	1	1		1	1													
	FT1	SED	24/4/13		2 jars		/			1	1								39					
	FT2	SED	24/4/13		2 jars		1	25		1	1													4
	ST1	SED	24/4/13		2 jars		1	9		1	1	2			_		_						_	1
										<u> </u>				+		-	-	-		1	-			-
-3 - 5										2000			-		_		-	-	-	-	100	-		-
		-								-	-		- 1	+	-	$^{+}$	3_	-		-	1		-	-
- 1								-	-		6		_	-	-	\dashv	-				1	-	-	
1											-		-	-	_	+	-		_		+-	-		4
	200000				-					-					-	-		-					-	1
		1							-	-	· -			- 1	-	-	- A		-	A	1	-	1	7
											-	1		_	_					*******	-			
		RELINO	UISHED BY:						_				R	ECEIV	ED BY						15	-	-	METHOD OF SHIPMENT
Name:	Nicola Willson	THE STATE OF THE S	DISTILLO OT.		Date: 26/4/2013		Name:		-			_	1.		ate:									Con' Note No:
	leyParsons				Time: 10:00	-	Of:							_	ime:				2070					
Name:					Date:		Name:							_	ate:									Transport Co:
Name: Of:					Time:		Of:						- 60-	Ť	ime:								-365	
V 44				100		1400	A				- "		10.0		101 4	40		Class Ha		-1-				

Water Container Codes: P = Unpreserved Plastic: N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic: AG = Amber Glass Unpreserved;

V = VOA Vial HCI Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic. HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic: F = Formaldehyde Preserved Glass;

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles, ST = Sterile Bottle; ASS = Plastic Bad for Acid Sulphate Soils, B = Unpreserved Bag.

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EB1311906	Page	: 1 of 4
Client	WORLEY PARSONS - INFRASTRUCTURE MWE	Laboratory	: Environmental Division Brisbane
Contact	NICOLA WILLSON	Contact	Customer Services
Address	QV1 Building Lvl 7	Address	2 Byth Street Stafford QLD Australia 4053
	250 St Georges Tce		
	PERTH WA, AUSTRALIA 6000		
É-mail	nicola.willson@worleyparsons.com	E-mail	Brisbane.Enviro.Services@alsglobal.com
Telephone	+61 08 9278 8111	Telephone	+61 7 3243 7222
Facsimile		Facsimile	: +61 7 3243 7218
Project	301012-01750	QC Level	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	BAE Dredging Site		
C-O-C number		Date Samples Received	17-MAY-2013
Sampler	Nicola Willson	Issue Date	28-MAY-2013
Order number	301012-01750-PS-CNT-100513ALS		
		No. of samples received	: 6
Quote number	EN/034/12	No, of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Matt Frost	Senior Organic Chemist	Brisbane Inorganics
Matt Frost	Senior Organic Chemist	Brisbane Organics

Address 2 Byth Street Stafford QLD Australia 4053 PHONE +61-7-3243 7222 Facsimile +61-7-3243 7218
Environmental Division Brisbane **BN 84 009 936 029 Part of the ALS Group An ALS Limited Company

2 of 4

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate difution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key:

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

3 of 4

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

4 of 4

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)					
Method: Compound C	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EP090: Organotin Compounds (Soluble) (QCLot: 2880949)												
EP090S: Tributyltin 56	6573-85-4	2	ngSn/L	<2	147 ngSn/L	109	24.1	115				
EP090: Organotin Compounds (Soluble) (QCLot: 2889274)												
EP090S: Tributyltin 56	6573-85-4	2	ngSn/L	<2	147 ngSn/L	81.2	24.1	115				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Environmental Division

Work Order

INTERPRETIVE QUALITY CONTROL REPORT

Page

1 of 5

Client WORLEY PARSONS - INFRASTRUCTURE MWE Laboratory Environmental Division Brisbane

Contact NICOLA WILLSON Contact Customer Services

Address QV1 Building Lvl 7 Address 2 Byth Street Stafford QLD Australia 4053

250 St Georges Tce PERTH WA, AUSTRALIA 6000

:EB1311906

E-mail nicola.willson@worleyparsons.com E-mail Brisbane.Enviro.Services@alsglobal.com

 Telephone
 +61 08 9278 8111
 Telephone
 +61 7 3243 7222

 Facsimile
 +61 7 3243 7218

Project 301012-01750 QC Level NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site BAE Dredging Site

C-O-C number Date Samples Received 17-MAY-2013

Sampler Nicola Willson Issue Date 28-MAY-2013
Order number 301012-01750-PS-CNT-100513ALS

No. of samples received 6
Quote number EN/034/12 No. of samples analysed 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

2 of 5

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	: × = Holding time	breach; ✓ = Withir	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EN60: ASLP Leaching Procedure								
LabSplit: Leach for organics and other tests (EN60a) S3 - ASLP LEACH		24-APR-2013		08-MAY-2013		21-MAY-2013	08-MAY-2013	×
LabSplit: Leach for organics and other tests (EN60a) S6 - ASLP LEACH,	S7 - ASLP LEACH	24-APR-2013		08-MAY-2013		22-MAY-2013	08-MAY-2013	×
EN60: Bottle Leaching Procedure								
LabSplit: Leach for organics and other tests (EN60-Dla) S3 - DI LEACH		24-APR-2013		08-MAY-2013		21-MAY-2013	08-MAY-2013	×
LabSplit: Leach for organics and other tests (EN60-Dla) S6 - DI LEACH,	S7 - DI LEACH	24-APR-2013		08-MAY-2013	-	22-MAY-2013	08-MAY-2013	Je.
EP090: Organotin Compounds (Soluble)	A STATE OF THE PARTY OF THE PAR						· Company	
Amber Glass Bottle - Unpreserved (EP090S) S3 - ASLP LEACH, S7 - ASLP LEACH	S6 - ASLP LEACH,	20-MAY-2013	28-MAY-2013	27-MAY-2013	×	28-MAY-2013	07-JUL-2013	~
Amber Glass Bottle - Unpreserved (EP090S)								
S3 - DI LEACH, S7 - DI LEACH	S6 - DI LEACH,	22-MAY-2013	23-MAY-2013	29-MAY-2013	1	24-MAY-2013	02-JUL-2013	✓

3 of 5

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers,

Matrix: WATER				Evaluation	n: 💌 = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS)						HILL PARKET	
Organotin Compounds (Soluble)	EP090S	2	6	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)	NAME OF TAXABLE PARTY.						
Organotin Compounds (Soluble)	EP090S	2	6	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

4 of 5

Work Order

EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project

301012-01750

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Organotin Compounds (Soluble)	EP090S	SOIL	USEPA SW 846 - 8270D Sample extracts are analysed by GC/MS coupled with high volume injection and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
ASLP for Non & Semivolatile Analytes	EN60a	SOIL	AS4439.3 Preparation of Leachates
Deionised Water Leach	EN60-Dla	SOIL	AS4439.3 Preparation of Leachates
Organotin Sample Preparation	ORG34	SOIL	In-house. A specified volume of sample is spiked with surrogate, acidified and vacuum filtered. Reagents and solvent are added and the mixture tumbled. The butyltin compounds is derivitisated, extracted and the subtitution reaction completed. The extract is transferred to a separatory funnel and further extracted two times with petroleum ether. The resultant extracts are combined and concentrated for analysis.

5 of 5

Work Order EB1311906

Client

WORLEY PARSONS - INFRASTRUCTURE MWE

Project 301012-01750

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- · For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL

Method		E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EN60: ASLP Leaching Procedure							
LabSplit: Leach for organics and other tests S3 - ASLP LEACH		_		_	21-MAY-2013	08-MAY-2013	13
LabSplit: Leach for organics and other tests S6 - ASLP LEACH,	S7 - ASLP LEACH	_		_	22-MAY-2013	08-MAY-2013	14
EN60: Bottle Leaching Procedure							
LabSplit: Leach for organics and other tests S3 - DI LEACH					21-MAY-2013	08-MAY-2013	13
LabSplit: Leach for organics and other tests S6 - DI LEACH,	S7 - DI LEACH				22-MAY-2013	08-MAY-2013	14
EP090: Organotin Compounds (Soluble)							
Amber Glass Bottle - Unpreserved S3 - ASLP LEACH, S7 - ASLP LEACH	S6 - ASLP LEACH,	28-MAY-2013	27-MAY-2013	1	_		

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.